

Nigerian Journal of Biochemistry and Molecular Biology

The Official Publication of the Nigerian Society of Biochemistry & Molecular Biology (NSBMB). Journal homepage: https://www.nsbmb.org.ng/journals

Research Article

Evaluation of Proximate and Phytochemical Constituents of Pentadiplandra brazzeana Baill ("Osumada") Roots

Mercy N. Egbule^{1,*}, Olutayo S. Shokunbi¹, God'swill N. Anyasor¹

¹Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria.

OPEN ACCESS

*CORRESPONDENCE

Egbule, M.N. mercynegbule05@gmail.com, +234-803-372-9604

ARTICLE HISTORY

Received: 31/03/2022 Reviewed: 06/06/2022 Revised: 19/08/2022 Accepted: 24/08/2022 Published: 30/09/2022

CITATION

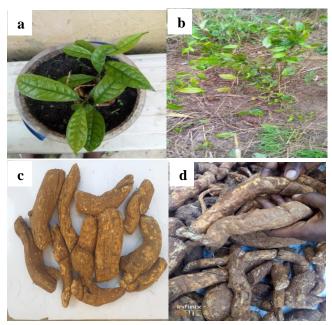
Egbule, M.N., Shokunbi, O.S., Anyasor, G.N. (2022). Evaluation of Proximate and Phytochemical Constituents of *Pentadiplandra* brazzeana Baill ("Osumada") Roots. Nigerian Journal of Biochemistry and Molecular Biology. 37(3), 166-174

ABSTRACT

Pentadiplandra brazzeana Baill (Pentadiplandraceae) root is an ethnobotanical food spice used traditionally in the management of several disorders. However, the proximate and phytochemical constituents of P. brazzeana roots from Nigeria are not well documented. Therefore, this study was designed to evaluate the proximate and phytochemical constituents of P. brazzeana roots obtained from Agbor, Delta State, Nigeria. Proximate and quantitative phytochemical analysis of P. brazzeana roots were determined using standard procedures. Proximate analysis showed that P. brazzeana roots contained ash (3.27 \pm 0.42 %), crude fat (6.87 \pm 0.31%), crude fibre (9.41 \pm 0.34%), moisture (10.66 \pm 0.23%), crude protein (18.00 \pm 0.51%) and carbohydrate (51.81 \pm 0.82%). Quantitative phytochemical evaluation revealed the presence of alkaloids (0.02 \pm 0.01%), saponins (0.41 \pm 0.02%), flavonoids (10.14 \pm 0.06%), tannins (1.54 \pm 0.10 g TAE/100 g) and total phenolic (2.28 \pm 0.01 g GAE/100 g) contents. Thus, the study showed that P. brazzeana roots could serve as an important source of nutritional and medicinal compounds. Further studies are recommended to investigate P. brazzeana root as potential source of food supplement and medicine to justify its ethnobotanical applications.

Keywords: Pentadiplandra brazzeana, Proximate, Phytochemicals, Nutrients.

INTRODUCTION


Plants are endowed with nutritional and medicinal properties that are used ethnobotanically in the management of several disorders (Alagbe *et al.*, 2019; Pathy *et al.*, 2021). Understanding the phytochemical constituents of potentially prophylactic or therapeutic medicines gives an evidence-based insight into their true medicinal value. This helps stakeholders take full advantage of the medicinal benefits of such plants (Pathy *et al.*, 2021).

Medicinal principles of plant origin are mainly phytochemicals including flavonoids, saponins, alkaloids, tannins, phenols and terpenoids. These phytochemicals act through a number of diverse mechanisms to elicit their medicinal effects (Aba and Asuzu, 2018).

The search of novel therapeutics for drug discovery by pharmaceutical industries and research scientist still rely on investigating ethnomedicinal plants, since about 80% of the global population still depends on phytotherapy (Pathy et al., 2021). Several medicinal food plants contain nutrients such as fibres, fats and proteins (Aili Hamzah et al., 2021) and antinutrients including phytic acid (Abdulwaliyu et al., 2019) and tannins (Carbas et al., 2020) that are of significant importance to health and diseases. The nutrients and phytochemicals in medicinal food plants could be used as nutraceuticals for human body development and protection against non-communicable inflammatory disorders including rheumatoid arthritis (Al-Awwadi, 2017; Anyasor et al., 2019), diabetes, cancer, and cardiovascular disorders (Okoduwa et al., 2017; Ogbonna et al., 2018). Active compounds in medicinal food plants have been isolated from parts of plants and explored for antiproliferative, anticancer

and anticytotoxic functions (Lee *et al.*, 2009; Okoro *et al.*, 2019). Some edible food plants contain nutrients, antinutrients, phenolic compounds and antioxidant properties that can act as functional ingredients in food products (Carbas *et al.*, 2020). Hence, medicinal food plants can be beneficial in nutraceuticals, functional foods, beverages and nutracosmetics industries (Nwachukwu *et al.*, 2017; Oladele *et al.*, 2021).

Pentadiplandra brazzeana is the specie in the genus Pentadiplandra that belongs to the Pentadiplandraceae family. P. brazzeana is commonly called J'oublie in French and joy perfume tree in English (Kitamura et al., 2015; Wansi et al., 2019). P. brazzeana (Figure 1) is called "osumada" or "uhuadan" in Ika speaking parts of Edo and Delta States, South-South, Nigeria. It exists as a shrub with many branches that grow up to five meters tall, or as a climbing plant with stems up to 20 meters long. The root system in shrubs is a branched complex of bulging roots, while the climbing type of the plant has large, fleshy tubers (Cimanga et al., 2018; Ngbolua et al., 2018).

Figure 1. Pentadiplandra brazzeana Baill ("Osumada") mature roots and its young plant grown in South-South, Nigeria.

Note: (a): The young plant growing in a nursery (b): The plant in its natural habitat (c): Freshly harvested roots of the plant (d): Partially dried roots of the plant

P. brazzeana root is used in traditional medicine in Nigeria, Cameroon, Central African Republic, Equatorial Guinea, Northern Angola, Gabon, Democratic Republic of the Congo, where it is obtained for local use and trade (Burkill, 1985; Cimanga *et al.*, 2018). It is used in Delta State, Nigeria as food spice (Okonji *et al.*, 2017). Amongst the Ika

people of Edo and Delta States, *P. brazzeana* ("osumada" or "uhuadan") is used as a soup spice by postpartum mothers for uterine cleansing, managing cold and fever. It is also used for managing headaches, dislocation and inflammation.

Aqueous extract of *P. brazzeana* roots has been demonstrated to possess androgenic activity (Kamtchouing *et al.*, 2002). *P. brazzeana* root is reported to possess *in vitro* alpha-amylase inhibitory activity (Okonji *et al.*, 2014) as well as cyanide detoxifying potential (Okonji *et al.*, 2017; Ehigie *et al.*, 2019). Traditionally, *P. brazzeana* has been used to manage pain and disorders such as arthritis, rheumatism, diarrhoea, dysentery, pulmonary disorder, subcutaneous parasitic infection. It has also been used as an abortifacient, diuretics (Burkill, 1985; Cimanga *et al.*, 2018; Ngbolua, *et al.*, 2018), aphrodisiac and for stimulating lactation (Cimanga *et al.*, 2018). The roots can also be used for flour preservation (Nyegue *et al.*, 2009).

Some compounds that have been isolated from *P. brazzeana* roots include; N-Benzyl-N¹-(4-methoxybenzyl) urea, N, N¹-di-(4-methoxybenzyl) urea, N, N¹-dibenzyl urea and p-methoxythiobenzaldehyde (Tsopmo *et al.*, 1999). Three of the synthesized urea-based compounds were demonstrated to have potent soluble epoxide hydrolase (sEH) inhibitory activity. The compound, 1, 3-bis (4-methoxybenzyl) urea was shown to effectively reduce inflammation pain in animal models (Kitamura *et al.*, 2015).

The essential oil from P. brazzeana roots has been determined to contain benzyl isothiocyanate and benzyl cyanide (Ndoye Foe et al., 2016). Studies showed that the essential oil obtained from P. brazzeana roots was more potent in inhibiting the growth and germination of Bacillus В. substilis, В. and cereus, megaterium stearothermophilus than Aframomum sulcatum and Polyalthia suaveolens plants. Hence, it can be used for preventing foodborne intoxication (Nyegue et al., 2014). Ethanol extract of fresh roots of P. brazzeana, popularly known as Arredoul Jaune, is a phytomedicine reportedly used as an antidiarrhoeal drug by locals in Kisangani-Zaire, Democratic Republic of Congo (Cimanga et al., 2018).

Studies have shown the presence of alkaloids, quinones, saponins, tannins and triterpenoids in both the leaves and roots of *P. brazzeana*, while anthocyanins, flavonoids and leuco-anthocyanins are present in the leaves from the Nord-Ubangi Province in Democratic Republic of the Congo (Cimanga *et al.*, 2018; Ngbolua *et al.*, 2018). Despite studies showing pharmacological benefits of *P. brazzeana* plant, there is still a paucity of data concerning the phytoconstituents of *P. brazzeana* roots from Nigeria. Therefore, this study was designed to determine the

proximate and phytochemical components of *P. brazzeana* roots from Nigeria.

MATERIALS AND METHODS

Reagents and Chemicals

Sodium hydroxide (NaOH), sodium carbonate, sodium chloride, formaldehyde (37%), diethyl ether, hydrogen peroxide, (Loba Chemie Pvt. Ltd., Jehangir Villa, 107, Wadehouse Road, Colaba, Mumbai, India), boric acid (BDH Chemicals Ltd, United Kingdom) and selenium dioxide (Nexchem Ltd., United Kingdom) were of analytical grade.

Plant Collection, Identification and Preparation

Pentadiplandra brazzeana roots were obtained during the dry season, in the month of January, 2021, from local Ika farms in Agbor (6° 15' 50.7312" N and 6° 12' 6.7788" E), Delta State, Nigeria. The plant with its root was identified and authenticated at the Herbarium, Obafemi Awolowo University, Ile-Ife, Nigeria and a voucher number Ife-17935 was assigned. Fresh root samples were washed with clean tap water to remove dirt and sand. The soft fibrous layers were removed from the hard layer and subsequently ovendried at 40°C. Dried samples were pulverized using a mixer grinder and stored at 4°C for future analysis.

Proximate Analysis of P. brazzeana Roots

Proximate analysis of ash (AOAC, I990), crude fat (AOAC, I990), crude fibre (AOAC, I990), moisture (AOAC, I990), crude protein (Pearson, 1976), and carbohydrate (James, 1995) contents of *P. brazzeana* roots were determined on dry weight basis.

Ash content determination of P. brazzeana roots:

Crucible was placed in a muffle furnace for 15 minutes, removed and placed in a desiccator for 30 minutes to cool off and weighed (W1). Five grams of each sample was weighed into a crucible (W2) and placed on a hot plate under a fume chamber. The temperature was increased slowly until smoking ceased and the sample became thoroughly charred. Thereafter, the crucible was placed at the center of the muffle furnace at 550° C for six hours to allow proper ashing. Crucible with ash was immediately transferred into the desiccator to cool, then the final weight (W3) was taken and percentage ash calculated as:

$$\% \, Ash = \frac{W2 - W3}{W2 - W1} \times 100$$

Where;

WI = Weight of empty crucible

W2 = Weight of crucible plus sample before ashing

W3 = Final weight of crucible and sample after ashing.

Crude fat content determination of P. brazzeana roots

Five grams of dry sample was weighed after moisture determination and transferred into the thimble. Round bottom flask (250 mL) was washed and dried at 105°C for 30 minutes, then cooled at room temperature in a desiccator and weighed (W_I) . Thimble with the sample was placed in an extractor, 150 mL of ethyl ether was measured into the round bottom flask and the Soxhlet extractor was set up. The condenser was connected to the Soxhlet extractor and connected to cold water. The heating mantle was turned on to extract the crude fat content. The heating was regulated until the solvent refluxed at a steady rate for 6 hours and then solvent (ethyl ether) recovered. The round bottom flask was placed in an oven at 105°C for 30 minutes and later placed in the desiccator to cool, then the weight (W_2) of flask with the oil was taken. Thereafter, the percentage weight of fat was calculated as:

% Fat content =
$$\frac{W2 - W1}{W3} \times 100$$

Where: W1= Weight of round bottom flask; W2 = Weight of round bottom flask with oil. W3: Weight of sample

Crude fibre content determination of P. brazzeana roots

Five grams of sample was weighed into a round bottom flask, 100 mL of 0.25 M sulphuric acid solution was added and the mixture boiled for 30 minutes and quickly filtered. The insoluble matter was washed several times with water to remove the acid. It was put into the flask and 100 mL of 0.31M sodium hydroxide solution was added and the resulting mixture boiled for 30 minutes and filtered. The residue was washed with water until it was free of base, then dried to constant weight in an oven, and weighed after cooling in a desiccator (W1). The weighed sample was incinerated in muffle furnace at 550°C, cooled in a desiccator and reweighed (W2).

Percentage crude fibre was calculated using:

% Crude fibre =
$$\frac{W1 - W2}{W3} \times 100$$

Where;

WI= weight of sample before incineration W2 = weight of sample after incineration W3= weight of initial sample

Moisture content determination of P. brazzeana roots:

Porcelain crucible was washed, and dried for 15 minutes at 105°C. It was allowed to cool in the desiccator for 15 minutes and weighed (W_I). Five grams of pulverized sample was weighed into the crucible (W_2). The crucible was cleaned and placed in the oven at 105°C for 4 hours. Thereafter, it was removed and placed immediately in the desiccator and allowed to cool for 15 minutes then weighed as fast as possible (W_3).

The percentage moisture content was calculated using:

$$\% Moisture = \frac{W2 - W3}{W2 - W1} \times 100$$

Where:

WI =Initial weight of empty crucible

W2 = Weight of crucible with 5 g of sample before drying

W3 = Final weight of crucible with 5 g of sample after drying.

Crude protein/nitrogen content determination of *P. brazzeana* roots

Crude protein was determined using the Kjeldahl method according to Pearson, (1976).

Digestion: P. brazzeana root sample (0.5 g) was weighed onto a quarter-size filter paper and transferred to a Kjeldahl digestion flask. One-gram tablet of the catalyst mixture (S₂O₂) and 15 mL of concentrated H₂SO₄ was added into the flask a little at a time, swirling well in between, to mix up the sample. A blank containing only concentrated H₂SO₄, catalyst and quarter-size filter paper was used. The flask with samples and blank was heated gently in an inclined position under a fume cupboard until frothing ceased, then boiled briskly until the digest was clear under a fume cupboard for about five hours. The digestion flask was swirled gently once in a while to facilitate uniform digestion and to bring down samples clinging to the sides of the flasks. They were cooled repeatedly under running water to bring down the heat of reaction and made up to 100 mL volume using distilled water in a 100 mL volumetric flask. The 100 mL constituted digest was set aside for later distillation.

Distillation: Ten millilitres of the digest was transferred into the distillation flask, 10 mL of 40% sodium hydroxide solution was added. The flask was then connected to a distillation apparatus before making alkaline. Ammonia was steam distilled into 5 mL boric acid indicator in a 100 mL conical flask, 50 mL of the distillate was collected.

Titration: Standard HCl (0.01N) was titrated. A blank titration was carried out using a quarter size filter paper.

% Crude protein = % $N \times$ protein factor;

Where;

Nitrogen factor (N) = 1.4 and Protein factor = 6.25

$$\% \ Nitrogen = \frac{Sample \ Titre - Blank \ Titre \times N \ of \ Acid \times 1.4}{Weight \ of \ Sample \ in \ 10 \ mL}$$

Carbohydrate content determination of *P. brazzeana* roots

Total carbohydrate content of *P. brazzeana* roots was obtained by subtraction method of James, (1995) using the equation below:

Total Carbohydrate = 100 - [% Crude Protein + % Crude Fat + % Crude Fibre + % Crude Total Ash].

Phytochemical Analysis of P. brazzeana Roots

Phytochemical analysis of *P. brazzeana* roots was done following standard procedures.

Alkaloids content determination

Alkaloids content was determined using the method described by Edeoga *et al.*, (2005). Five grams of pulverized *P. brazzeana* roots was weighed into a 250 mL beaker and 200 mL of 20% acetic acid in ethanol was added. This was covered and allowed to stand for 4 hours. The resulting mixture was filtered and the extract was concentrated using water bath to obtain 1/4th of the initial volume. Concentrated ammonium hydroxide was added drop wise to the extract until complete precipitation. The whole solution was allowed to settle and the collected precipitates were washed with dilute ammonium hydroxide and was then filtered. The residue was oven dried at 60°C and weighed. The alkaloid concentration was determined using the formula below;

% Alkaloid Composition =
$$\frac{W1 - W2}{W1} \times 100$$

Where: W1= Initial weight of sample, W2: Final weight of sample

Saponins content determination

Saponins content was determined using the method described by Edeoga et al., (2005). Twenty grams of pulverized P. brazzeana roots was put into a conical flask and 100 mL of 20% aqueous ethanol was added. The sample was heated in hot water bath at 55°C for 4 hours with continuous stirring. The mixture was filtered and the residue re-extracted with fresh 200 mL 20% ethanol. The combined extracts were concentrated to 40 mL over hot water bath at about 90°C. The concentrate was transferred into a 250 mL separating funnel and 20 mL of diethyl ether was added and shaken vigorously. The aqueous layer formed was recovered while the ether layer was discarded. The purification process was repeated. Then, 60 mL of n-butanol was added. The combined n-butanol extract was washed twice with 10 mL of 5% aqueous sodium chloride. The whole mixture was then evaporated on hot water bath and was later oven dried at 40°C to obtain a constant weight. The percentage saponins content in the sample was calculated using the formula below;

% Saponins concentration =
$$\frac{\text{Weight of Final Filtrate}}{\text{Weight of Sample}} \times 100$$

Total flavonoids content determination

Total flavonoids content was determined using the method described by Edeoga *et al.*, (2005). Ten grams of pulverized *P. brazzeana* was extracted repeatedly using 100 mL of 80% aqueous methanol at room temperature. The whole solution

was filtered through Whatman No 52 filter paper. The filtrate was later transferred into a crucible and evaporated into dryness over a water bath and weighed to a constant weight. The percentage flavonoid content in the sample was calculated using the formula below;

% Flavonoids concentration =
$$\frac{\text{Weight of final filtrate}}{\text{Weight of sample}} \times 100$$

Tannins content determination

Tannins content was determined using the method described by Edeoga *et al.*, (2005). *P. brazzeana* roots (500 mg) was weighed and put into a 50 mL plastic bottle. Then, 50 mL of distilled water was added into the bottle and shaken using mechanical shaker for one hour. The solution was filtered into a 50 mL volumetric flask and made up to the mark. Thereafter, 5 mL of the filtrate was pipetted out into a test tube. Then, 2 mL of 0.1 M FeCl₃ in 0.1 N HCl and 0.008 M potassium ferrocyanide was added. The absorbance was measured at 120 nm within 10 minutes. The concentration was extrapolated from tannic acid standard curve with $R^2 = 0.9959$. The tannic acid content of the *P. brazzeana* was expressed as g tannic acid equivalent (TAE)/100 g dry weight. All samples were analyzed in triplicates.

Total phenolic content determination

Total phenolic content was determined using the modified method described by Edeoga *et al.*, (2005).

Preparation of fat free sample: Two grams of the pulverized *P. brazzeana* roots were defatted with 100 mL of hexane using a Soxhlet apparatus for two hours. The fat free sample was boiled with 50 mL of ether to extract the phenolic content for 15 minutes. Thereafter, 5 mL of the extract was pipetted into a 50 mL flask, and 10 mL of distilled water was added. Subsequently, 2 mL of ammonium hydroxide solution and 5 mL of concentrated amyl alcohol were also added. The samples were made up to mark and left to react for 30 minutes for colour development. This was measured at 505 nm.

The total phenolic content in the *P. brazzeana* extract was extrapolated from a gallic acid standard curve with $R^2 = 0.9662$ and expressed as g gallic acid equivalent (GAE)/100 g dry weight. All samples were analyzed in triplicates

Statistical Analysis

Data was analyzed using descriptive statistics with Microsoft Excel package. Values are expressed as Mean \pm SD (Standard deviation) of triplicate determinations.

RESULTS AND DISCUSSION

Table 1 shows the percentage ash, fat, crude fibre, moisture, protein and carbohydrate contents of *P. brazzeana* roots.

Table 1. Proximate Composition of *P. brazzeana* Roots

Parameters	Percentage (%)
Ash	3.27 ± 0.42
Crude Fat	6.87 ± 0.31
Crude Fibre	9.41 ± 0.34
Moisture	10.66 ± 0.23
Crude Protein	18.00 ± 0.51
Carbohydrate	51.81 ± 0.82

Where indicated, values are expressed as mean \pm SD (standard deviation of mean) percent; $n=3\,$

Table 2 shows the quantitative alkaloids, saponins, flavonoids, tannins and total phenols composition of *P. brazzeana* roots.

Table 2. Phytochemical Composition of *P. brazzeana* Roots.

Phytochemical	Quantity ± SD
Alkaloids	$0.02 \pm 0.01\%$
Saponins	$0.41 \pm 0.02\%$
Flavonoids	$10.14 \pm 0.06\%$
Tannins	$1.54 \pm 0.10 \text{ g TAE}/100 \text{ g}$
Total Phenols	$2.28 \pm 0.01g~GAE/~100~g$

All values are expressed as Mean \pm SD (Standard deviation); n=3 GAE: Gallic acid equivalent; TAE: Tannic acid equivalent

Discussion

Table 1 shows the proximate composition of P. brazzeana roots and revealed the ash content $(3.27 \pm 0.42\%)$ of P. brazzeana root was found to be lower than the ash content $(9.60 \pm 0.10\%)$ reported by Bouba $et\ al.$, (2012). However, it was higher $(12.11 \pm 0.00\%)$ in P. brazzeana stem bark (Alagbe $et\ al.$, (2019)). This research reports higher ash content than earlier literature $(1.51 \pm 0.05\%)$ on $Zingiber\ officinale$ rhizome (Lawal $et\ al.$, (2018)). The presence of ash in P. brazzeana root indicates it contains minerals. Minerals are important substances required for enzyme activation, bone formation, red blood cell regeneration and macronutrients metabolism for proper body homeostasis (Alagbe $et\ al.$, (2019)).

Crude fat content (6.87 \pm 0.31%) of *P. brazzeana* root in this study, was slightly higher than previous value in *P. brazzeana* root (6.2 \pm 0.2%) (Bouba *et al.*, 2012) and *Z. officinale* (4.29 \pm 0.06%) (Lawal *et al.*, 2018). Dietary fats consist of different types of fatty acids, possesses a relative

energy density of 9 kcal/g which helps contribute to weight gain. Consuming natural and whole diets high in carbohydrates or fats, has shown equal amount of weight loss by participants that consumed them. (Forouhi *et al.*, 2018). This suggests that *P. brazzeana* root from Nigeria could contribute to dietary energy supply, function in fatsoluble vitamins transport or help retain food palatability.

The crude fibre content in *P. brazzeana* roots (9.41 \pm 0.34%) in this study was lower than crude fibre content (41.03%) reported earlier in P. brazzeana stem bark (Alagbe et al., 2019). This difference could be attributed to the larger structural thickness of the stem compared with the roots. In addition, crude fibre being the non-digestible carbohydrates that are not digested by mammalian enzymes but by rumen of microorganisms, increases with the age of the plants. It consists of cellulose, semicellulose, lignin and other soluble fibres that impact on the structural composition of plants (Zainuddin et al., 2014). Dietary fibres when ingested, act as non-caloric bulking agents, enhancing water and oil retention, while improving emulsion and oxidative stability in humans and animals (Elleuch et al., 2011; Alagbe et al., 2019). The presence of fibre in *P. brazzeana* root ssuggests it could serve as a dietary fibre source for preventing gastrointestinal disorder, breast cancer, and cardiovascular diseases.

In this present study, moisture content of *P. brazzeana* root $(10.66 \pm 0.23\%)$ was slightly higher than previously reported values in P. brazzeana root $(9.5 \pm 0.1\%)$ by Bouba et al. (2012) and P. brazzeana stem (8.75 %) documented by Alagbe et al., (2019). Moisture could improve solvation of cellular metabolites through hydrogen bonding to improve the optimum performance of water-soluble metabolic enzymes (Asaolu et al., 2012). Furthermore, moisture could improve the hydroxyl radical scavenging ability of dietary polyphenols, thereby improving the overall well-being of the body (Qu et al., 2018). Moisture content of P. brazzeana roots is not as high as in leafy vegetables such as Telfairia occidentalis (fluted pumpkin) Vernonia amygdalina (bitter leaf L), Ocimium grastissimum (scent leaf), Basella alba L (India spinach) which gives an indication of its longer shelf life for its proper storage (Alagbe et al., 2019; Oladele et al., 2021).

The protein content $(18.00 \pm 0.51\%)$ in this study was higher than previous protein content in *P. brazzeana* roots $(11.3 \pm 0.1\%)$ reported by Bouba *et al.*, (2012) and in *P. brazzeana* stem bark (6.43%) demonstrated by Alagbe *et al.*, (2019). Proteins contribute to the vital repair of worn-out tissues and oxygen transport in the body (Alagbe *et al.*, 2019). The higher protein content observed could have resulted from

thiourea, urea compounds and other non-protein nitrogenous compounds found in *P. brazzeana* roots (Ngbolua *et al.*, 2018).

The carbohydrate content (51.81 \pm 0.82%) of *P. brazzeana* roots in this study, was higher than previous values (22.2%) reported in P. brazzeana roots by Bouba et al., (2012) and lower than carbohydrate content (77.47 ± 0.01%) of Carpolobia lutea root reported by Olayinka et al., (2019). The reason for the higher content could be due to differences in geographical locations, weather and analytical method used. Carbohydrate content was determined by the dinitrosalicylic acid (DNS) method as against the subtraction method employed in this study. Soil type could have also contributed to the differences in values. P. brazzeana accumulates dietary sugars in its roots and can contribute to dietary energy, though, not as much as tubers and cereals (Bouba et al., 2012). Roots and tubers such as cassava and potatoes processed into cassava-sweet potato garri, contain high amount of carbohydrates ranging from $78.11 \pm 0.01\%$ – $83.59 \pm 0.01\%$ (Karim et al., 2016) while cereals including millet, maize and rice contain carbohydrate in an amount between $70.41 \pm 1.03\%$ - $77.94 \pm 0.32\%$ (Yankah *et al.*, 2020).

Table 2 showed that quantities of phytochemicals detected were as follows: alkaloids $(0.02 \pm 0.01\%)$, saponins $(0.41 \pm 0.02\%)$, flavonoids $(10.14 \pm 0.06\%)$, tannins $(1.54 \pm 0.10 \text{ g})$ TAE/100 g) and total phenols $(2.28 \pm 0.01\text{ g})$ GAE/100 g). Alkaloids, phenols and tannins have been suspected to be responsible for the antimicrobial, spasmolytic and antiamoebic activities of *P. brazzeana* based herbal medicine (Cimanga *et al.*, 2018). Alkaloids have been reported to exhibit stimulatory effect on nerves, act as anticonvulsant and muscle relaxant. (Bernhoft, 2010; Doughari, 2012).

Saponin content $(0.41 \pm 0.02\%)$ in this study was lower than values $(1.25 \pm 0.71 - 1.49 \pm 1.0\%)$ previously reported in *Ceiba pentandra* (L) Gaertn and *Bombax buonopozense* (P) Beauv roots (Chisom *et al.*, 2014). The presence of saponins suggests *P. brazzeana* root could possess saponin emulsifying property which could justify its usage as hypocholesterolemic, immunomodulatory, anti-inflammatory (Murthy *et al.*, 2020), antifungal, antiparasitic, antitumour (Kang *et al.*, 2005), antiviral, antibacterial and antiparasitic agents (Cimanga *et al.*, 2018; Oleszek and Oleszek, 2020).

This study further revealed that flavonoids content in *P. brazzeana* roots was $10.14 \pm 0.06\%$, a value higher than in stem and root back $(1.02 \pm 0.04\%$ and $0.51 \pm 0.05\%)$ of *Vernonia amygdalina* respectively (Eyong *et al.*, 2011).

Dietary flavonoids possess anticancer properties against different types of cancer, such as gastric, breast, prostate, and colorectal cancer (Rodríguez-García, *et al.*, 2019) and this could be due to their radical scavenging properties (Adetayo *et al.*, 2020). Hence, flavonoids could contribute to improving the overall antioxidant status and body wellbeing (Okoro *et al.*, 2019).

Tannins composition (1.54 \pm 0.10 g/100 g) in *P. brazzeana* roots was higher than aqueous tannins content (0.26 \pm 0.00 g/100 g) in root plant sections reported by Sani *et al.*, (2014). The presence of tannins in *P. brazzeana* roots suggests it could be used as an antiseptic in wound healing. More so, tannins could act as anticancer, antioxidant, anti-inflammatory and antimicrobial compounds (Ogawa and Yazaki, 2018).

In the present study, the total phenolic content of P. brazzeana roots (2.28 \pm 0.01 g GAE/100 g) was slightly higher than the previous total phenolic content (2.2 \pm 0.1 g GAE/100 g) of P. brazzeana roots reported by Bouba et al., (2012). Phenols have been demonstrated to exhibit anti-inflammatory, anti-thrombotic and vasoprotective properties (Galasso et al., 2019). Total phenolic contents in foods could increase antioxidant status of the body and invariably mitigate oxidative stress-related diseases (Fu et al., 2011; Ly et al., 2015).

CONCLUSION

Findings from this research suggest that *P. brazzeana* root could be a potential source of nutrients and bioactive compounds for promoting human well-being. It is therefore recommended that further studies be carried out on *P. brazzeana* root to scientifically validate its ethnobotanical use in the management of inflammatory and oxidative stress-related disorders.

AUTHORS' CONTRIBUTIONS

Authors MNE, OSS and GNA conceptualized and designed the study. MNE executed the experiment and collected data while data analysis and interpretations were done by MNE and GNA. MNE, OSS and GNA drafted and finalized the manuscript. Final version was approved by all authors.

FUNDING STATEMENT

This research work was partly supported with a competitive grant award (BU/RIIC/2021/005) by Research, Innovation & International Cooperation, Babcock University, Ilishan-Remo, Nigeria.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

ACKNOWLEDGEMENT

The authors acknowledge the Director and members of the Research, Innovation & International Cooperation (RIIC), Babcock University, Ilishan-Remo, Nigeria for the partial funding of the research, Mr. Amah Gogonte and Mr. Isioma Evans Egbule for the technical support.

REFERENCES

- Aba, P. E., & Asuzu, I. U. (2018). Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. *Indian Journal of Natural Products and Resources*, 9(2), 85-96.
- Abdulwaliyu, I., Arekemase, S. O., Adudu, J. A., Batari, M. L., Egbule, M. N., & Okoduwa, S. I. R. (2019). Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. *Clinical Nutrition Experimental* 28, 42-61.
- Adetayo, M., Shokunbi, O., Oyelese, A., & Adetayo, A. (2020). *In vitro* antisickling and sickling-reversal activities of *Carica papaya* fruit at different stages of ripening: *Carica papaya* and sickle cell disease. *Babcock University Medical Journal (BUMJ)*, 3(2), 10-18.
- Aili Hamzah, A. F., Hamzah, M. H., Che Man, H., Jamali, N. S., Siajam, S. I., & Ismail, M. H. (2021). Recent updates on the conversion of pineapple waste (*Ananas comosus*) to value-added products, future perspectives and challenges. *Agronomy*, 11(11), 2221.
- Alagbe, J. O., Shittu, M. D., Bamigboye, S. O., & Oluwatobi, A. O. (2019). Proximate and mineral composition of *Pentadiplandra brazzeana* stems bark. *Electronic Research Journal of Engineering, Computer and Applied Sciences*, 1(2019), 91-99.
- Al-Awwadi, N. A. J. (2017). Review: potential health benefits and scientific review of ginger. *Journal of Pharmacognosy Phytotherapy*, 9 (7), 111-116.
- Anyasor, G. N., Okanlawon, A. A., & Ogunbiyi, B. (2019). Evaluation of anti-inflammatory activity of *Justicia secunda* Vahl leaf extract using *in vitro* and *in vivo* inflammation models. *Clinical Phytoscience*, 5(1), 1-13.
- AOAC. (1990). Official Methods of Analysis. Association of Official Analytical Chemists, 15th edition, Washington D.C., Arlington, V. A., 503-515.
- Asaolu, S. S., Adefemi, O. S., Oyakilome, I. G., Ajibulu, K. E., & Asaolu, M. F. (2012). Proximate and mineral composition of Nigerian leafy vegetables. *Journal of Food Research*, 1(3), 214.
- Bernhoft, A. (2010). A brief review on bioactive compounds in plants. *In:* Aksel Bernhoft (ed). Bioactive compounds in plants benefits and risks for man and animals. The Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271, Oslo. Pp. 11-17.
- Bouba, A., Njintang, N., Foyet, H., Scher, J., Montet, D., & Mbofung, C. (2012). Proximate composition, mineral and vitamin content of some wild plants used as spices in Cameroon. Food and Nutrition Sciences, 3(4), 423-432.
- Burkill, H. M. (1985). The useful plants of West Africa. *Royal Botanical Gardens, Kew*, 1, 319.

- Carbas, B., Machado, N., Oppolzer, D., Ferreira, L., Queiroz, M., Brites, C., Rosa, E. A. S., & Barros, A. I. (2020). Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. *Antioxidants*, 9(2), 186.
- Chisom, I. F., Okereke, C., & Okeke, C. (2014).
 Comparative phytochemical and proximate analyses on *Ceiba pentandra* (L) Gaertn and *Bombax buonopozense* (P) Beauv. *International Journal of Herbal Medicine*, 2(2), 162-167.
- Cimanga, K. R., Lubiba, N. Z., Makila, B. M. F., Tona, L. G., Kambu, K. O., Vlietinck, A. J., & Pieters, L. (2018). Biological activities of Arredoul Jaune, a phytomedicine based ethanol extract from fresh roots of *Pentadiplandra brazzeana* Baill (Pentadiplandaceae) used as an antidiarrhoeal drug in Kisangani-Democratic Republic of Congo. *European Journal of Biomedical and Pharmaceutical Sciences*, 5(1), 130-139.
- Doughari, J. H. (2012). Phytochemicals: extraction methods, basic structures and mode of action as potential chemotherapeutic agents. Rijeka, Croatia: INTECH Open Access Publisher, pp. 1-33
- Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. *African Journal of Biotechnology*, 4(7), 685-688.
- Edeoga, H. O., Omosun, G., & Uche, L. C. (2006). Chemical composition of *Hyptis sauveolens* and *Ocimum gratissium* hybrids from Nigerian medicinal plants. *African Journal of Biotechnology*, 5(10), 892-895
- Ehigie, A. F., Adeleke, G. E., Oladiran, W. A., & Ehigie, L. O. (2019). Screening for rhodanese producing bacterium in freshly pressed cassava effluents of a cassava processing industry channeled to Odo-Oba Stream in Ogbomoso-Nigeria. *Journal of Applied and Natural Science*, 11(3), 650-656.
- Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich byproducts of food processing: Characterisation, technological functionality and commercial applications: A review. *Food Chemistry*, 124(2), 411-421.
- Eyong, E. U., Agiang, M. A., Atangwho, I. J., Iwara, I. A., Odey, M. O., & Ebong, P. E. (2011). Phytochemicals and micronutrients composition of root and stem bark extracts of *Vernonia amygdalina* Del. *Journal of Medicine and Medical Science*, 2(6), 900-903.
- Forouhi, N. G., Krauss, R. M., Taubes, G., & Willett, W. (2018). Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. *BMJ*, *361*. https://doi.org/10.1136/bmj.k2139.
- Fu, L., Xu, B. T., Xu, X. R., Gan, R. Y., Zhang, Y., Xia, E. Q., & Li, H. B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. *Food Chemistry*, 129(2), 345-350.
- Galasso, C., Gentile, A., Orefice, I., Ianora, A., Bruno, A., Noonan, D. M., ... & Brunet, C. (2019). Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. *Nutrients*, 11(6), 1226

- James, C.S. (1995). Analytical chemistry of foods. Springer, New York. doi: 10.1007/978-1-4615-2165-5
- Kamtchouing, P., Mbongue Fandio, G. Y., Dimo, T., & Jatsa, H. B. (2002). Evaluation of androgenic activity of *Zingiber officinale* and *Pentadiplandra brazzeana* in

male rats. Asian Journal of Andrology, 4(4), 299–301.

- Kang, J. H., Sung, M. K., Kawada, T., Yoo, H., Kim, Y. K., Kim, J. S., & Yu, R. (2005). Soybean saponins suppress the release of proinflammatory mediators by LPSstimulated peritoneal macrophages. *Cancer Letters*, 230(2), 219-227.
- Karim, O. R., Adebanke, B. M., Akintayo, O. A., & Awoyale, W. (2016). Physical, chemical and sensory properties of cassava (*Manihot esculenta*) - sweet potato (*Ipomoea batatas*) gari. National University of Food Technologies. *Ukrainian Journal of Food Science* 4(2), 276-289.
- Kitamura, S., Morisseau, C., Inceoglu, B., Kamita, S. G., De Nicola, G. R., Nyegue, M., & Hammock, B. D. (2015).
 Potent natural soluble epoxide hydrolase inhibitors from *Pentadiplandra brazzeana* Baillon: Synthesis, quantification, and measurement of biological activities *in vitro* and *in vivo*. *PLoS One*, 10(2), e0117438.
- Lawal, A. R., Olayinka, B. U., Murtadha, R. A., Ayinla, A., & Etejere, E. O. (2018). Comparative analysis of phytochemical and proximate composition of *Allium* sativum L. and *Zingiber officinale* Rosc. Nigerian Journal of Basic and Applied Sciences, 26(2), 82-87.
- Lee, T. H., Wang, M. J., Chen, P. Y., Wu, T. Y., Wen, W. C., Tsai, F. Y., & Lee, C. K. (2009). Constituents of *Polyalthia longifolia* var. pendula. *Journal of Natural Products*, 72(11), 1960-1963.
- Ly, C., Yockell-Lelievre, J., Ferraro, Z. M., Arnason, J. T., Ferrier, J., & Gruslin, A. (2015). The effects of dietary polyphenols on reproductive health and early development. *Human Reproduction Update*, 21(2), 228-248.
- Murthy, H. N., Yadav, G. G., Dewir, Y. H., & Ibrahim, A. (2020). Phytochemicals and biological activity of desert date (*Balanites aegyptiaca* (L.) Delile). *Plants*, 10(1), 32.
- Ndoye Foe, F. M. C., Tchinang, T. F. K., Nyegue, A. M., Abdou, J. P., Yaya, A. J. G., Tchinda, A. T., Essame, J. O., & Etoa, F. X. (2016). Chemical composition, in vitro antioxidant and anti-inflammatory properties of essential oils of four dietary and medicinal plants from Cameroon. BMC Complementary and Alternative Medicine, 16(1), 1-12.
- Ngbolua, K., Kongobi, N. N., Nzewe, C. T., Ashande, C. M., Inkoto, C. L., Lufulwabo, G. L., Bongo, G. N., & Konga, D. W. (2018). Pentadiplandra brazzeana Baill. (Pentadiplandraceae): Chemical screening assessment and a mini-review on its bioactivity and phytochemistry. Journal of Advancement in Medical and Life Sciences, 6(4), 1-5
- Nwachukwu, V. A., Udedi, S. C., Ezeonu, F. C., Brai, B. I. C., Ezeanyanaso, C. S., & Elemo, G. N. (2017). Bioactive agents, nutraceuticals potentials, phytochemistry, and food value of *Emilia coccinea* leaf: a review. *Journal of Complementary and Alternative*

- Medical 4(1), Research doi:10.9734/jocamr/2017/29435
- Nyegue, M., Ndoyé, F., AmvamZollo, H., Etoa, F. X., Agnaniet, H., & Menut, C. (2009). Chemical and biological evaluation of essential oil of Pentadiplandra brazzeana (Bail.) roots from Cameroon. Advances in Phytotherapy Research, 91-107.
- Nyegue, M. A., Ndoye-Foe, F., Etoa, F. X., Zollo et, P. H. A., & Menut, C. (2014). Study of chemical composition, growth inhibition and antigerminative effect of three essential oils from Cameroon on four Bacillus strains. Journal of Essential Oil Bearing Plants, 17(6), 1335-1342.
- Ogawa, S., & Yazaki, Y. (2018). Tannins from Acacia mearnsii de wild bark: tannin determination and biological activities. Molecules (Basel, Switzerland), 23(4), 837.
- Ogbonna, O. C., Fadeiye, E. O., & Ikem, R. T. (2018). Blood glucose response on consumption of cassava varieties (Garri) in healthy Nigerian subjects. Journal of Nutrition and Human Health, 2(1), 22-27
- Okoduwa, S. I., Umar, I. A., James, D. B., & Inuwa, H. M. (2017). Anti-diabetic potential of Ocimum gratissimum leaf fractions in fortified diet-fed streptozotocin treated rat model of Type-2 diabetes. Medicines, 4(4), 73.
- Okonji, R. E., Akinwunmi, K. F., Madu, J. O., Bamidele, F. S., & Funmilola, A. (2014). *In Vitro* study on α-amylase inhibitory activities of Digitaria exilis, Pentadiplandra brazzeana (Baill) and Monodora myristica. International Journal of Biological and Chemical Sciences, 8(5), 2306-2313.
- Okonji, R. E., Fagbohunka, B. S., Ehigie, L. O., Ayinla, Z. A., & Ojo, O. O. (2017). Physicochemical properties of rhodanese: A cyanide detoxifying enzyme from Pentadiplandra brazzeana (Baill) root. African Journal of Biotechnology, 16(14), 704-711.
- Okoro, E. E., Osoniyi, O. R., Jabeen, A., Shams, S., Choudhary, M. I., & Onajobi, F. D. (2019). Antiproliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L. Clinical Phytoscience, 5(1), 1-9.
- Oladele, A., Ofodili, E. A. U., & Alade, G. (2021). Proximate and mineral elements composition of three forest fruits sold in Port Harcourt. Nigeria Journal of Applied Environmental Sciences and Management 24(11), 1899-1908.

- Olayinka, B. U., Ogungbemi, R. F., Abinde, O. O., Lawal, A. R., Abdulrahaman, A. A., & Etejere, E. O. (2019). Proximate and phytochemical compositions of leaf and root of (cattle stick) Carpolobia lutea G. Don. Journal of Applied Sciences and Environmental Management, 23(1), 53-57.
- Oleszek, M., & Oleszek, W. (2020). Saponins in Food. In: Xiao, J., Sarker., Asakawa, Y. (eds). Handbook of Dietary Phytochemicals. Springer Singapore. pp. 1-40
- Pathy, K. K., Flavien, N. B., Honoré, B. K., Vanhove, W., & Van Damme, P. (2021). Ethnobotanical characterization of medicinal plants used in Kisantu and Mbanza-Ngungu territories, Kongo-Central Province in DR Congo. *Journal of Ethnobiology and Ethnomedicine*, 17(1), 1-15.
- Pearson, D. (1976). The Chemical analysis of foods, 7th Edition, Churchill Livingstone, London, 7-11.
- Qu, G., Chen, J., & Guo, X. (2018). The beneficial and deleterious role of dietary polyphenols on chronic degenerative diseases by regulating expression. Bioscience Trends, 12(6), 526-536.
- Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 8(5), 137.
- Sani, I., Abdulhamid, A., & Bello, F. (2014). Eucalyptus camaldulensis: Phytochemical composition of ethanolic and aqueous extracts of the leaves, stem-bark, root, fruits and seeds. Journal of Scientific and Innovative Research, 3(5), 523-526. https://doi.org/10.31254/jsir.2014.3510
- Tsopmo, A., Ngnokam, D., Ngamga, D., Ayafor, J. F., & O. (1999).Urea derivatives Pentadiplandra brazzeana. Journal of Natural Products, 62(10), 1435-1436. https://doi/10.1021/np990111f
- Wansi, J. D., Sewald, N., Nahar, L., Martin, C., & Sarker, S. D. (2019). Bioactive essential oils from the Cameroonian rain forest: A Review- Part II. Trends in Phytochemical Research, 3(1), 3-52.
- Yankah, N., Intiful, F. D., & Tette, E. M. (2020). Comparative study of the nutritional composition of local brown rice, maize (obaatanpa), and millet- a baseline research for varietal complementary feeding. Food Science and Nutrition, 8(6), 2692-2698.
- Zainuddin, M. F., Shamsudin, R., Mokhtar, M. N., & Ismail, D. (2014). Physicochemical properties of pineapple plant waste fibers from the leaves and stems of different varieties. BioResources, 9(3), 5311-5324.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. The publisher remains neutral with regard to jurisdictional claims.

(8)

Copyright © 2022 by Egbule et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

> Submit your next manuscript to NJBMB at https://www.nsbmb.org.ng/journals