NJBMB 1004

Ionic requirements for inositol trisphosphate- and thapsigargin-induced Ca²⁺ release from rat liver endoplasmic reticulum

Clement O. Bewaji*

School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, England

ABSTRACT: The Ca^{2+} -transport and permeability properties of the endoplasmic reticulum (ER) from rat liver were studied by manipulating the ionic composition of the external medium. The ATP-dependent Ca^{2+} loading into the ER vesicles was slow in the absence of K^+ and the amount of Ca^{2+} absorbed was also limited. However, the presence of gluconate in the medium greatly enhanced the Ca^{2+} -loading capacity of the vesicles. Ca^{2+} release from the vesicles was triggered by inositol (1,4,5) trisphosphate in the presence of GTP or by thapsigargin. While the $\text{Ins}(1,4,5)\text{P}_3$ -induced Ca^{2+} release was dependent on the presence of K^+ in the external medium, thapsigargin released Ca^{2+} from the vesicles irrespective of the ionic composition of the external medium. These findings suggest that a specific ion channel is not involved in the release of Ca^{2+} from ER vesicles by thapsigargin.

Key Words: Ca²⁺ transport; Endoplasmic reticulum; Microsomes; Thapsigargin; Inositol (1,4,5) trisphosphate.

 P_3 -stimulated Ca $^{2+}$ release is greatly enhanced by low concentrations of GTP, in the presence or absence of polyethylene glycol (1,2). Dawson (3) have shown that GTP mediates a slow but extensive Ca $^{2+}$ mobilization. However, these effects are not observed in the absence of potassium and chloride as counterions.

In rat liver endoplasmic reticulum, the Ins (1,4,5)

In recent times, the sesquiterpene lactone, thapsigargin, has become a useful tool in characterizing the Ca²⁺ release process from the ER (4-6). This compound selectively produces a hormone-independent Ca²⁺-release from the ER by bypassing the membrane hydrolysis of phosphoinositides and acting directly on the intracellular store (5).

The present work was designed to see whether the presence of KCl in the external medium is also necessary for the release of Ca²⁺ from ER vesicles by thapsigargin.

*Present Address: Department of Physiology and Biochemistry, University of Ilorin, Ilorin, Nigeria.

ATP (vanadate-free) and dithiothreital were from Boehringer-Mannheim, UK Ltd. Thapsigargin,

Boehringer-Mannheim, UK Ltd. Thapsigargin, choline chloride, magnesium gluconate, potassium gluconate, phosphocreatine, creatine kinase, polyethylene glycol and Hepes were purchased from Sigma Chemical Co., Poole, Dorset, UK. Ins(1,4,5)P₃ was a gift from Dr. R. F. Irvine, AFRC Institute of Animal Physiology, Babraham, Cambridge, UK. All other reagents were of analytical grade.

Rat liver microsomes (36,000g fraction) were prepared from fed male albino rats as described by Dawson and Fulton (7). The protein concentrations of the microsomal fractions were determined by the procedure of Lowry . (8). **Pathon of the microsomal fractions were determined by the procedure of Lowry . (8). **Pathon of the microsomal fractions were determined by the procedure of Lowry . (8). **Pathon of the fluorescent Ca²⁺ uptake uptake was initiated by the addition of microsomes (1.5 mg/ml final concentration) to the reaction vessel containing 150 mM sucrose, 50 mM KCl, 10 mM

Hepes/KOH (pH 7.0), 5% (w/v) polyethylene glycol (PEG), 1 mM dithiothreitol, 5 mM ATP, 2 mM MgCl₂, 10 mM phosphocreatine, 10 μ g/ml creatine kinase and Fluo 3 (0.67 μ M final concentration). This basic medium was varied, to suit various experimental conditions, by the replacement of K⁺ with Na⁺ or choline, and Cl⁻ with gluconate, as described in the legends to the figures.

GTP-dependent Ca^{2+} release was initiated by the addition of GTP (50 μ M final concentration). Ins(1,4,5)P₃-dependent Ca^{2+} release was also initiated by the addition of Ins(1,4,5)P₃ to a final concentration of 2 μ M. Fluorescence intensity was measured at 30°C using a Shimadzu RF 5000 spectrofluorimeter with an excitation wavelength of 505 nm and emission wavelength at 530 nm.

In the control experiment (Fig. 1a) $\ln s(1,4,5) P_3$ was found to release Ca^{2+} from microsomal vesicles after ATP-dependent Ca^{2+} loading in a medium containing KCI. Subsequent experiments (Figs. 1b, 1c and 2a, b, c) showed that the uptake of Ca^{2+} into the vesicles varied according to the ionic composition of the surrounding medium. Substitution of K^+ with Na^+ did not affect the capacity of the vesicles to load Ca^{2+} . However, substitution of K^+ with choline or CI^- with gluconate drastically reduced the rate of Ca^{2+} loading into the vesicles, as well as the total amount of Ca^{2+} loaded. These substitutions also enhanced the GTP-dependent Ca^{2+} -mobilization and the Ins(1,4,5)-induced Ca^{2+} release from the ER vesicles (Fig. 2).

In the experiment shown in Fig. 3, thapsigargin was used to release ${\rm Ca^{2+}}$ from the microsomal vesicles after an initial ${\rm Ca^{2+}}$ loading in various ionic media. Thapsigargin released ${\rm Ca^{2+}}$ from the vesicles, irrespective of the ionic composition of the external medium. The rate and extent of ${\rm Ca^{2+}}$ loading was, however, influenced by the external medium.

It is now generally accepted that the turnover (synthesis and hydrolysis) of polyphosphoinositides, provoked by a wide variety of extracellular messengers such as neurotransmitters, hormones, growth factors and many other biologically active substances, is the signal for the transmembrane control of some cellular processes (10 - 13). The hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns (4,5)P₃] produces two intracellular messengers: 1,2-diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate [Ins(1,4,5)P₃]. The former activates protein kinase C while the latter releases Ca^{2+} from intracellular stores by activating a Ca^{2+} channel (11).

The intracellular Ca²⁺ stores have been shown to be heterogeneous in character and various investigators have used calcium pump inhibitors such as thapsigargin and 2,5-di-(tert-butyl)-1,4-benzohydroguinone (DBHQ) to characterize the different Ca²⁺ stores (14,15).

The results obtained inthe present study show that the ionic composition of the external medium influences the rate and extent of Ca^{2+} uptake by microsomal vesicles. This is in agreement with the concept that Ca^{2+} is transported into the vesicles through voltage-sensitive Ca^{2+} -channels which are controlled by the electrical potentials across the membranes (16).

The results presented in Figs. 1 and 2 show

the microsomal vesicles, the GTP-dependent Ca²⁺ mobilization by the vesicles as well as the Ins(1,4,5)P₃-induced Ca²⁺ release by the vesicles are all functions of the ionic composition of the external medium. This is very well illustrated by the slow and very limited Ca²⁺ uptake and the lack of GTP and Ins(1,4,5)P₃ responses shown in Fig. 1c. Fig. 2 shows that all these responses are enhanced in the presence of Na⁺ and/or Cl⁻ ions.

The fact that thapsigargin releases Ca²⁺ from the microsomal vesicles, irrespective of the ionic composition of the external medium, suggests that the release pathway is not through the voltagesensitive Ca²⁺ channel which is regulated by the electrochemical potential gradient across the membranes. While the characteristics of the active Ca²⁺ uptake by the endoplasmic reticulum have been well studied, the mechanism by which Ca²⁺ is released in response to the depolarization of the membrane is still not well understood. Several mechanisms have been proposed for the Ca²⁺ release process, the most interesting among them being the depolarization-induced Ca2+ release and the Ca²⁺-induced Ca²⁺ release. The first mechanism is supported by the results of the present study in which transient potentials were induced across the membranes by manipulating the electrolyte composition of the reaction medium.

thapsigargin and Ins(1,4,5)P₃ on the Ca²⁺ release process from the endoplasmic reticulum and other intracellular Ca²⁺ stores would throw more light on the mechanism(s) of Ca²⁺ uptake and release by various intracellular Ca²⁺ transport systems.

ACKNOWLEDGEMENTS: The author wishes to thank Dr. A. P. Dawson for laboratory facilities, advice and encouragement, and the Welcome Trust for financial support.

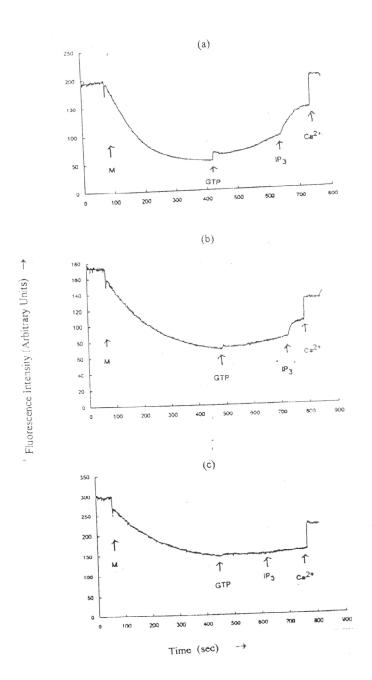


Fig. 1: Effects of potassium and chloride ions on Ca²⁺ uptake and release in rat liver microsomal vesicles.

Microsomes (1.5 mg/ml) were incubated in (a) the basic reaction medium described in the "Materials and Methods" section, (b) a solution in which KCl and $MgCl_2$ in the basic medium were replaced with K-gluconate (50 mM) and Mg-gluconate (2 mM) respectively, (c) a solution in which $MgCl_2$ in the basic medium was replaced with Mg-gluconate (2 mM) and KCl was omitted without replacement. Arrows

indicate where the following were added: M, microsomes; G, GTP (50 μ M); IP₃, Ins(1,4,5)P₃ (2 μ M); Ca²⁺, calcium ions (10 nmoles). Traces were obtained from data generated by Shimadzu RF 5000 software which were subsequently fed into Microsoft Excel software.

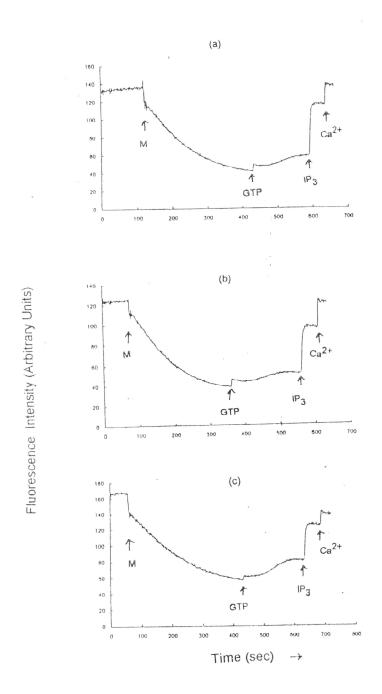


Fig. 2: Effect of sodium ions on Ca²⁺ uptake and release in rat liver microsomal vesicles.

Microsomes (1.5 mg/ml) were incubated in (a) a solution in which KCl in the basic medium described in the "Materials and Methods" section was replaced with NaCl (50 mM), (b) a solution in which KCl in the basic medium was replaced with choline chloride (50 mM), (c) a solution in which KCl in the basic medium was replaced with Na-gluconate (50 mM) and MgCl₂ was replaced with Mg-gluconate (2 mM) and KCl was omitted without replacement. Arrows indicate where the following were added: M, microsomes; G, GTP (50 μ M); IP₃, Ins(1,4,5)P₃ (2 μ M); Ca²⁺, calcium ions (10 nmoles). Traces were obtained from data generated by Shimadzu RF 5000 software which were subsequently fed into Microsoft Excel software.

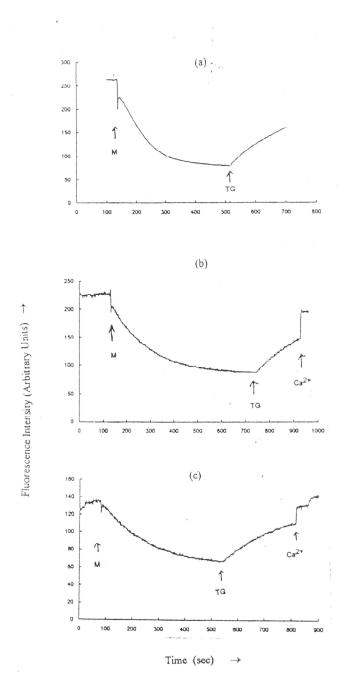


Fig. 3: Ionic requirements for thapsigargin-induced Ca²⁺ release from rat liver microsomal vesicles.

Microsomes (1.5 mg/ml) were incubated in (a) the basic reaction medium described in the "Materials and Methods" section, (b) a solution in which KCl and MgCl₂ in the basic medium were replaced with K-gluconate (50 mM) and Mg-gluconate (2 mM) respectively, (c) a solution in which MgCl₂ in the basic medium was replaced with Mg-gluconate (2 mM) and KCl was omitted without replacement. Arrows indicate where the following were added: M, microsomes; TG, thapsigargin (10 nM); Ca²⁺, calcium ions (10 nmoles). Traces were obtained from data generated by Shimadzu RF 5000 software which were subsequently fed into Microsoft Excel software.

- Dawson, A. P.; Comerford, J. G. and Fulton, D. V. (1986) The effect of GTP on inositol 1,4,5trisphosphate-stimulated Ca²⁺ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? Biochem. J. 234, 311 - 315.
- Dawson, A. P.; Hills, G. and Comerford, J. G. (1987)
 The mechanism of action of GTP on Ca²⁺ efflux from rat liver microsomal vesicles. Biochem. J. 244, 87 92.
- Thastrup, O.; Foder, B. and Scharff, O. (1987) The calcium mobilizing and tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion. Biochem. Biophys. Res. Commun. 142, 654 - 660.
- Thastrup, O.; Dawson, A. P.; Scharff, O.; Foder, B.; Cullen, P. J.; Drobak, B. K.; Bjrrrum, P. J.; Christensen, S. B. and Hanley, M. R. (1989) Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents and Actions 27, 17 - 23.
- Thastrup, O.; Cullen, P. J.; Drobak, B. K.; Hanley, M. R. and Dawson, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. Proc. Natl. Acad. Sci. (USA) 87, 2466 2470.
- Dawson, A. P. and Fulton, D. V. (1983) Some properties of the Ca²⁺-stimulated ATPase of a rat liver microsomal fraction. Biochem. J. 210, 405 - 410.
- Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 - 275.

- Comerford, J. G. and Dawson, A. P. (1993) Effects of CoA and acyl-CoAs on GTP-dependent Ca²⁺ release and vesicle fusion in rat liver microsomal vesicles. Biochem, J. 289, 561 - 567.
- Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312, 315 - 321.
- Berridge, M. J. (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Ann. Rev. Biochem. 56, 159 - 193.
- Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature (London) 361, 315 - 325.
- Missiaen, L.; Taylor, C. W. and Berridge, M. J. (1991) Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature (London) 352, 241 - 244.
- Michelangeli, F.; DaSilver, A.; Sayers, L. and Brown, G. (1992) The effects of thimerosal and cyclopiazonic acid on the Ca²⁺-pump from rat cerebellum microsomes. Biochem. Soc. Trans. 20(2), 205S.
- Wictome, M. P.; Lee, A. G. and East, J. M. (1992) Mechanism of action of Ca²⁺-ATPase inhibitors. Biochem. Soc. Trans. 20(3), 249S.
- Carafoli, E. (1984) Plasma membrane Ca²⁺ transport and Ca²⁺ handling by intracellular stores: An integrated picture with emphasis on regulation. In: Mechanisms of intestinal electrolyte transport and regulation, pp. 121 -134. Alan R. Liss, New York.