Apigenin and Kaempferol from Ficus benjamina Leaves as Potential Inhibitors of Enzymes Relevant to Alzheimer’s Disease Pathology: An In Silico and In Vitro Study
DOI:
https://doi.org/10.4314/njbmb.v39i4.3Abstract
Alzheimer’s disease is a progressive neurodegenerative disease. In this report, we identified and evaluated polyphenol constituents from the leaves of Ficus benjamina, targeting enzymes relevant to the pathology of Alzheimer's disease. Polyphenols were extracted from the leaves of F. benjamina, subjected to LC-MS and GC-MS analyses. The constituents were subjected to In Silico analyses, targeting acetylcholinesterase (AChE), butyrylcholinesterase (BUChE), and beta-secretase 1 (BACE1). In vitro antioxidant (ferrous ion-chelating, copper reducing antioxidant, ferric reducing antioxidant power (FRAP), and total antioxidant capacity), and enzyme inhibitory (AChE, BUChE, and BACE1) assays, were performed using standard procedures. In silico analysis revealed that Apigenin and Kaempferol showed strong functional interactions with AChE, BUChE, and BACE1. Apigenin and Kaempferol showed potent antioxidant capacity with IC50 values of 76.82 ± 0.95 µg/ml and 38.85 ± 0.68 µg/ml (Metal chelating assay); 63.77 ± 2.19 and 81.53 ± 2.54 mg AAE/g (FRAP assay); 166.90 ± 5.02 and 216.28 ± 8.20 mg AAE/g (Total antioxidant capacity); and 64.96 ± 0.80 and 86.09 ± 1.27 mg TE/g (CUPRAC assay) respectively. They also significantly inhibited AChE, BUChE, and BACE1 with IC50 values of 42.67 ± 0.76 µg/ml and 46.76 ± 0.61 µM (Apigenin) respectively. The evaluation of Apigenin and Kaempferol from F. benjamina confirmed their potential usefulness in Alzheimer’s conditions, and this could be due to their inhibitory action against the functional activities of AChE, BUChE, and BACE1.
Downloads
References
Abdel-Hameed, E. S. (2009). Total phenolic contents and free radicals scavenging activity of certain Egyptian Ficus species leaf samples. Food Chemistry, 114(4), 1271–1277. https://doi.org/10.1016/j.foodchem.2008.11.005
Abhishek, J., Varsha, O., Gaurav, K., Loganathan, K., V., K., & R, B. (2013). Phytochemical composition and antioxidant activity of methanolic extract of Ficus benjamina (Moraceae) leaves. Research Journal of Pharmacy and Technology, 6(11), 1184–1189.
Abraham, M. J., Murtola, T., Schulz, R., P??all, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.
Albarracin, S. L., Stab, B., Casas, Z., Sutachan, J. J., Samudio, I., Gonzalez, J., Gonzalo, L., Capani, F., Morales, L., & Barreto, G. E. (2012). Effects of natural antioxidants in neurodegenerative disease. Nutritional Neuroscience, 15(1),1–9. https://doi.org/10.1179/1476830511Y.0000000028
Apak, R., Guclu, K., Ozyurek, M., Karademir, S. E., & Altun, M. (2006). Total antioxidant capacity assay of human serum using copper (II)-neocuproine as chromogenic oxidant: The CUPRAC method. Free Radical Research, 39, 949–961.
Andrade, S., Nunes, D., Dabur, M., Ramalho, M. J., Pereira, M. C., & Loureiro, J. A. (2023). Therapeutic Potential of Natural Compounds in Neurodegenerative Diseases: Insights from Clinical Trials. Pharmaceutics, 15(1), 212. https://doi.org/10.3390/pharmaceutics15010212
Asojo, O. A., Asojo, O. A., Ngamelue, M. N., Homma, K., & Lockridge, O. (2011). Cocrystallization studies of full-length recombinant butyrylcholinesterase (BChE) with cocaine. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 67(4), Article 4. https://doi.org/10.1107/S1744309111004805
Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., Ahmed, J., & Shahid, M. (2019). Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Frontiers in Aging Neuroscience, 11. https://www.frontiersin.org/articles/10.3389/fnagi.2019.00155
Azadeh, E., & Hermann, S. (2012). Natural polyphenols against neurodegenerative disorders: Potentials and pitfall. Ageing Research Reviews, 11, 329–345.
Bai, R., Guo, J., Ye, X.-Y., Xie, Y., & Xie, T. (2022). Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Research Reviews, 77, 101619. https://doi.org/10.1016/j.arr.2022.101619
Baker, N. a. (2004). Poisson-Boltzmann methods for biomolecular electrostatics. Methods in Enzymology, 383(1990), 94–118.
Bakir, S., Catalkaya, G., Ceylan, F. D., Khan, H., Guldiken, B., Capanoglu, E., & Kamal, M. A. (2020). Role of Dietary Antioxidants in Neurodegenerative Diseases: Where are We Standing? Current Pharmaceutical Design, 26(7), 714–729. https://doi.org/10.2174/1381612826666200107143619
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘“antioxidant power”’ the FRAP assay. Analytical Biochemistry, 239(1), 70–76.
Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56.
Budimir, A. (2011). Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharmaceutica, 61, 1–14.
Callizot, N., Campanari, M., Rouvière, L., Jacquemot, G., Henriques, A., Garayev, E., & Poindron, P. (2021). Huperzia serrata Extract ‘NSP01’ With Neuroprotective Effects-Potential Synergies of Huperzine A and Polyphenols. Frontiers in Pharmacology, 12. https://www.frontiersin.org/article/10.3389/fphar.2021.681532
Caro, A. A., Commissariat, A., Dunn, C., Kim, H., García, S. L., Smith, A., Strang, H., Stuppy, J., Desrochers, L. P., & Goodwin, T. E. (2015). Prooxidant and antioxidant properties of salicylaldehyde isonicotinoyl hydrazone iron chelators in HepG2 cells. Biochimica et Biophysica Acta, 1850(11), 2256–2264. https://doi.org/10.1016/j.bbagen.2015.08.005
Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Berryman, J. T., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., Iii, G. A. C., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., … Kollman, P. A. (2022). Amber 2022. University of California.
Chaluveelaveedu, M. N., Ashwini, K., Prateek, N., Nityasha, G., Chitrangda, S., Timir, T., & Awanish, K. (2016). Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Advances in Bioinformatics, 1–6.
Cruz. (2012). In vitro antimycobacterial activity and HPLC-DAD screening of phenolics from Ficus benjamina L. and Ficus luschnathiana (Miq.) Miq. Leaves. Natural Product Research, 26(23), 2251–2254.
Dai, J., Shen, D., Yoshida, W. Y., Parrish, S. M., & Williams, P. G. (2012). Isoflavonoids from Ficus benjamina and their inhibitory activity on BACE1. Planta Medica, 78(12), 1357–1362. https://doi.org/10.1055/s-0032-1315001
Daniyan, M. O. (2023). pyGROMODS: a Python package for the generation of input files for molecular dynamic simulation with GROMACS. Journal of Biomolecular Structure and Dynamics, DOI: 10.1080/07391102.2023.2239929
Daniyan, M. O., & Ojo, O. T. (2019). In silico identification and evaluation of potential interaction of Azadirachta indica phytochemicals with Plasmodium falciparum heat shock protein 90. Journal of Molecular Graphics and Modelling, 87, 144–164.
Dassault Systèmes BIOVIA. (2015). Discovery Studio Modeling Environment, Release 4.5, San Diego: Dassault Systèmes, 2015.
Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules, 26(17), 5377. https://doi.org/10.3390/molecules26175377
Dolenc, J., Riniker, S., Gaspari, R., Daura, X., & Gunsteren, W. F. V. (2011). Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities. Journal of Computer-Aided Molecular Design, 25(8), 709–716.
Durrant, J. D., & McCammon, J. A. (2010). NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein—Ligand Complexes. Journal of Chemical Information and Modeling, 50, 1865–1871.
Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: From 3D Structure to Function. Chemico-Biological Interactions, 187(1–3), 10–22.
Egan, W. J., Merz, Kenneth M., & Baldwin, J. J. (2000). Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
Ellman, G. L., Courtney, K. D., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
Figueira, I., Garcia, G., Pimpão, R. C., Terrasso, A. P., Costa, I., Almeida, A. F., Tavares, L., Pais, T. F., Pinto, P., Ventura, M. R., Filipe, A., McDougall, G. J., Stewart, D., Kim, K. S., Palmela, I., Brites, D., Brito, M. A., Brito, C., & Santos, C. N. (2017). Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/s41598-017-11512-6
Figueira, I., Tavares, L., Jardim, C., Costa, I., Terrasso, A. P., Almeida, A. F., Govers, C., Mes, J. J., Gardner, R., Becker, J. D., McDougall, G. J., Stewart, D., Filipe, A., Kim, K. S., Brites, D., Brito, C., Brito, M. A., & Santos, C. N. (2019). Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: An in vitro study. European Journal of Nutrition, 58(1), 113–130. https://doi.org/10.1007/s00394-017-1576-y
Fogolari, F., Brigo, A., & Molinar, H. i. (2002). The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. Journal of Molecular Recognition, 15(6), 377–392.
Francesca, M., Marina, N., Vanni, C., & Vincenza, A. (2007). Multiwell fluorometric and colorimetric microassays for the evaluation of beta-secretase (BACE-1) inhibitors. Analytical and Bioanalytical Chemistry.
Gabr, T. M., & Abdel-Raziq, M. S. (2018). Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. 28(17), 2910–2913.
García-Ayllón, M.-S., Small, D. H., Avila, J., & Saez-Valero, J. (2011). Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and β-Amyloid. Frontiers in Molecular Neuroscience, 4. https://www.frontiersin.org/articles/10.3389/fnmol.2011.00022
Gauthier, S., Webster, C., Servaes, S., Morais, J. A., & Rosa-Neto, P. (2022). World Alzheimer Report 2022 – Life after diagnosis: Navigating treatment, care and support (p. 416).
Gerlits, O., Ho, K.-Y., Cheng, X., Blumenthal, D., Taylor, P., Kovalevsky, A., & Radić, Z. (2019). A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological Interactions, 309, 108698. https://doi.org/10.1016/j.cbi.2019.06.011
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
Ghosh, A. K., & Osswald, H. L. (2015). BACE1 (β-Secretase) inhibitors for the treatment of Alzheimer’s disease. Chemical Society Reviews, 43(19), 6765–6813.
Ghosh, A. K., Reddy, B. S., Yen, Y.-C., Cárdenas, E. L., Rao, K. V., Downs, D., Huang, X., Tang, J., & Mesecar, A. D. (2016). Design of potent and highly selective inhibitors for human β-secretase 2 (memapsin 1), a target for type 2 diabetes. Chemical Science, 7(5), 3117–3122. https://doi.org/10.1039/C5SC03718B
Greig, N. H., Lahiri, D. K., & Sambamurti, K. (2002). Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. International Psychogeriatrics, 14 Suppl 1, 77–91. https://doi.org/10.1017/s1041610203008676
Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723.
Gulcin, I. (2012). Antioxidant activity of food constituents: An overview. Archives of Toxicology, 86, 345–391.
Hampel, H., Vassar, R., De Strooper, B., Hardy, J., Willem, M., Singh, N., Zhou, J., Yan, R., Vanmechelen, E., De Vos, A., Nisticò, R., Corbo, M., Imbimbo, B. P., Streffer, J., Voytyuk, I., Timmers, M., Tahami Monfared, A. A., Irizarry, M., Albala, B., … Vergallo, A. (2021). The β-Secretase BACE1 in Alzheimer’s Disease. Biological Psychiatry, 89(8), 745–756. https://doi.org/10.1016/j.biopsych.2020.02.001
Hassan, A. A., Mawardi, R., Mohd, A. S., & Abdul Manaf, A. (2003). The chemical constituents of Ficus benjamina Linn. And their biological activities. Pertanika Journal of Science and Technology, 11(1), 73–81.
Hasti, S., Mora, E., Utami, R., & Yulis, L. U. (2014). Sub-chronic Toxicity of Ficus benjamina L. Leaves Ethanol Extract on the Liver Function of White Mice. Procedia Chemistry, 13, 204–208. https://doi.org/10.1016/j.proche.2014.12.028
Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology, 80, 1778–1783.
Huang, W.-J., Zhang, X., & Chen, W.-W. (2016). Role of oxidative stress in Alzheimer’s disease. Biomedical Reports, 4(5), 519–522. https://doi.org/10.3892/br.2016.630
Hussein, R. M., Mohamed, W. R., & Omar, H. A. (2018). A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pestic Biochem Physiol, 152, 29–37. https://doi.org/10.1016/j.pestbp.2018.08.008
Imran, M., Rasool, N., Rizwan, K., Zubair, M., Riaz, M., Zia-Ul-Haq, M., Rana, U. A., Nafady, A., & Jaafar, H. Z. (2014). Chemical composition and biological studies of Ficus benjamina. Chemistry Central Journal, 8(1), 12. https://doi.org/10.1186/1752-153X-8-12
Iris, F. F. Benzie & Strain J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a measure of ‘‘Antioxidant Power’’: The FRAP Assay. Analytical Biochemistry 239(1996), 70–76.
Jucá, M. M., Cysne Filho, F. M. S., de Almeida, J. C., Mesquita, D. da S., Barriga, J. R. de M., Dias, K. C. F., Barbosa, T. M., Vasconcelos, L. C., Leal, L. K. A. M., Ribeiro, J. E., & Vasconcelos, S. M. M. (2020). Flavonoids: Biological activities and therapeutic potential. Natural Product Research, 34(5), 692–705. https://doi.org/10.1080/14786419.2018.1493588
Jung, H. A., Ali, M. Y., Choi, R. J., Jeong, H. O., Chung, H. Y., & Choi, J. S. (2016). Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food and Chemical Toxicology, 89, 104–111.
Jung, H. A., Jin, S. E., Choi, R. J., & Kim, D. H. (2010). Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Science, 87, 420–430.
Kanaujia, V. K. (2011). Evaluation of hepatoprotective activity on the leaves of Ficus benjamina Linn. Journal of Natural Product and Plant Resources, 1(3), 59–69.
Karunrat, S., & Izabela, K. (2012). Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chemistry, 134, 1011–1019. Kiralan, M., Ketenoglu, O., Kiralan, S. S., & Yilmaz, F. M. (2023). Composition and functional properties of Fig (Ficus carica) Phenolics. In M. F. Ramadan (Ed.), Fig (Ficus carica): Production, Processing, and Properties. Springer, Cham. https://doi.org/10.1007/978-3-031-16493-4_17
Korb, O., Stützle, T., & Exner, ThomasE. E. (2006). PLANTS: Application of Science Ant Colony Optimization to Structure-Based Drug Design. Lecture Notes in Computer Vol. 4150: Ant Colony Optimization and Swarm Intelligence -ANTS2006 Proceedings, 4150, 247–258. https://doi.org/10.1007/11839088_22
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. TheScientificWorldJournal, 2013, 162750. https://doi.org/10.1155/2013/162750
Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.
Lee, M. C., Yang, R., & Duan, Y. (2005). Comparison between Generalized-Born and Poisson-Boltzmann methods in physics-based scoring functions for protein structure prediction. Journal of Molecular Modeling, 12(1), 101–110.
Li, D., Tan, M., & Jie, L. (2011). Synthesis, Antioxidant and Antibacterial Activities of Salicylaldehyde Azine. Advanced Materials Research, 396–398, 2366–2369. https://doi.org/10.4028/www.scientific.net/AMR.396-398.2366
Li, Y., Yuan, H., Yang, K., Xu, W., Tang, W., & Li, X. (2010). The structure and functions of P-glycoprotein. Current Medicinal Chemistry, 17(8), 786–800. https://doi.org/10.2174/092986710790514507
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. In Drug Discovery Today: Technologies (Vol. 1, Issue 4, pp. 337–341).
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46, 3–26.
Lushchekina, S., Nemukhin, A., Varfolomeev, S., & Masson, P. (2016). Understanding the non-catalytic behavior of human butyrylcholinesterase silent variants: Comparison of wild-type enzyme, catalytically active Ala328Cys mutant, and silent Ala328Asp variant. Chemico-Biological Interactions, 259(Part B), 223–232. https://doi.org/10.1016/j.cbi.2016.04.007
Maiorov, V. N., & Crippen, G. M. (1995). Size-independent comparison of protein three-dimensional structures. Proteins, 22(3), 273–283. https://doi.org/10.1002/prot.340220308
Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
Mehtab, P. (2009). A novel antimicrobial triterpenic acid from the leaves of Ficus benjamina (var. Comosa. Journal of Saudi Chemical Society, 13(3), 287–290.
Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321.
Najeeb, U., Noor, M. K., & Wasi, U. (2015). Alzheimer’s disease, epidemiology, causes, diagnosis and novel treatments: A review. International Journal of Basic Medical Sciences and Pharmacy, 5(2), 2049–4963.
Nguyen, H., Roe, D. R., & Simmerling, C. (2013). Improved Generalized Born Solvent Model Parameters for Protein Simulations. Journal of Chemical Theory and Computation, 9(4), 2020–2034.
Nordberg, A., Ballard, C., Bullock, R., Darreh-Shori, T., & Somogyi, M. (2013). A Review of Butyrylcholinesterase as a Therapeutic Target in the Treatment of Alzheimer’s Disease. The Primary Care Companion for CNS Disorders, 15(2), PCC.12r01412. https://doi.org/10.4088/PCC.12r01412
Obiol-Pardo, C., & Rubio-Martinez, J. (2007). Comparative evaluation of MMPBSA and XSCORE to compute binding free energy in XIAP-peptide complexes. Journal of Chemical Information and Modeling, 47(1), 134–142.
Ojha, V. (2013). Phytochemical Composition and Antioxidant Activity of Methanolic Extract of Ficus benjamina (Moraceae) Leaves. Research J. Pharm. and Tech.
Oladiji, A. T., Yakubu, M. T., & Oyegoke, R. A. (2012). Evaluation of antidiarrhoeal property and ethanolic extract of Ficus benjamina variegate fruits in Wistar rats. Nigerian Journal of Gastroenterology and Hepatology, 4(1), 25–31.
Padurariu, M. C., Lefter, A., Serban, R., Stefanescu, I. L., C., & Chirita, R. (2013). The oxidative stress hypothesis in Alzheimer’s disease”. Psychiatria Danubina, 25, 401–409.
Pahari, N., Majumdar, S., Karati, D., & Mazumder, R. (2022). Exploring the pharmacognostic properties and pharmacological activities of phytocompounds present in Ficus racemosa linn.: A concise review. Pharmacological Research - Modern Chinese Medicine, 4, 100137. https://doi.org/10.1016/j.prmcm.2022.100137
Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140. https://doi.org/10.1016/j.jff.2020.104140
Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278.
Parveen, M. (2009). A new triterpenoid from the leaves of Ficus benjamina (var. Comosa. Natural Product Research, 23(8), 729–736.
Pedretti, A., Villa, L., & Vistoli, G. (2002). VEGA: A versatile program to convert, handle and visualize molecular structure on Windows-based PCs. In Journal of Molecular Graphics and Modelling (Vol. 21, Issue 1, pp. 47–49).
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58, 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.
Potůčková, E., Hrušková, K., Bureš, J., Kovaříková, P., Špirková, I. A., Pravdíková, K., Kolbabová, L., Hergeselová, T., Hašková, P., Jansová, H., Macháček, M., Jirkovská, A., Richardson, V., Lane, D. J. R., Kalinowski, D. S., Richardson, D. R., Vávrová, K., & Šimůnek, T. (2014). Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH) analogs: Iron chelation, anti-oxidant and cytotoxic properties. PloS One, 9(11), e112059.
Puente, C., Gómez, I., Kharisov, B., & López, I. (2019). Selective colorimetric sensing of Zn(II) ions using green-synthesized silver nanoparticles: Ficus benjamina extract as reducing and stabilizing agent. Materials Research Bulletin, 112, 1–8.
Rani, A., Zia-Ul-Sabah, Tabassum, F., & Sharma, A. K. (n.d.). Molecular interplay between phytoconstituents of Ficus Racemosa and neurodegenerative diseases. European Journal of Neuroscience, n/a(n/a). https://doi.org/10.1111/ejn.16250
Reddy, M. R., Reddy, C. R., Rathore, R. S., Erion, M. D., Aparoy, P., & Reddy, R. N. (2013). Free Energy Calculations to Estimate Ligand-Binding Affinities in Structure-Based Drug Design. Current Pharmaceutical Design, 5, 3323–3337.
Reid, G. A., & Darvesh, S. (2015). Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model. Neuroscience, 298, 424–435.
Ritiel, C. dC, Vanessa, A., Aline, A. B., Vanessa, J., Marli, M., Anraku, dC, Dominique, G., & Margareth, L. A. (2012). In vitro antimycobacterial activity and HPLC–DAD screening of phenolics from Ficus benjamina L. and Ficus luschnathiana (Miq.) Miq. Leaves. Natural Product Research, 26(23), 2251–2254.
Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., Prlić, A., Quesada, M., Quinn, G. B., Westbrook, J. D., Young, J., Yukich, B., Zardecki, C., Berman, H. M., & Bourne, P. E. (2011). The RCSB protein data bank: Redesigned web site and web services. Nucleic Acids Research, 39(SUPPL. 1), D392–D401.
Salehi, B., Prakash Mishra, A., Nigam, M., Karazhan, N., Shukla, I., Kiełtyka-Dadasiewicz, A., Sawicka, B., Głowacka, A., Abu-Darwish, M. S., Hussein Tarawneh, A., Gadetskaya, A. V., Cabral, C., Salgueiro, L., Victoriano, M., Martorell, M., Docea, A. O., Abdolshahi, A., Calina, D., & Sharifi-Rad, J. (2021). Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytotherapy Research: PTR, 35(3), 1187–1217. https://doi.org/10.1002/ptr.6884
Saptarini, N. M., & Herawati, I. E. (2015). Comparative Antioxidant Activity on The Ficus benjamina and Annona reticulata Leaves. International Journal of Public Health Science (IJPHS), 4(1), Article 1. https://doi.org/10.11591/ijphs.v4i1.4707
Sasidharan, S. P., Yang, X., & Arunachalam, K. (2023). An Overview of Ethnobotany, Phytochemicals, and Pharmacological Properties of Ficus Species. In K. Arunachalam, X. Yang, & S. Puthanpura Sasidharan (Eds.), Bioprospecting of Tropical Medicinal Plants (pp. 481–509). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-28780-0_18
Sathya, M., Premkumar, P., Karthick, C., Moorthi, P., Jayachandran, K. S., & Anusuyadevi, M. (2012). BACE1 in Alzheimer’s disease. Clinica Chimica Acta; International Journal of Clinical Chemistry, 414, 171–178.
Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: Antioxidants and beyond. The American Journal of Clinical Nutrition, 81(1 Suppl), 215S-217S.
Scholey, A., Downey, L. A., Ciorciari, J., Pipingas, A., Nolidin, K., Finn, M., Wines, M., Catchlove, S., Terrens, A., Barlow, E., Gordon, L., & Stough, C. (2012). Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite, 58(2), 767–770.
Serçinoğlu, O., & Ozbek, P. (2018). gRINN: A tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations. Nucleic Acids Research, 46(W1), W554–W562. https://doi.org/10.1093/nar/gky381
Sharifi-Rad, M., Lankatillake, C., Dias, D. A., Docea, A. O., Mahomoodally, M. F., Lobine, D., Chazot, P. L., Kurt, B., Tumer, T. B., Moreira, A. C., Sharopov, F., Martorell, M., Martins, N., Cho, W. C., Calina, D., & Sharifi-Rad, J. (2020). Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics. Journal of Clinical Medicine, 9(4), 1061. https://doi.org/10.3390/jcm9041061
Sieniawska, E., Świątek, Ł., Sinan, K. I., Zengin, G., Boguszewska, A., Polz-Dacewicz, M., Bibi Sadeer, N., Etienne, O. K., & Mahomoodally, M. F. (2022). Phytochemical Insights into Ficus sur Extracts and Their Biological Activity. Molecules, 27(6), 1863. https://doi.org/10.3390/molecules27061863
Silva dos Santos, J., Gonçalves Cirino, J. P., de Oliveira Carvalho, P., & Ortega, M. M. (2021). The pharmacological action of kaempferol in central nervous system diseases: A Review. Frontiers in Pharmacology, 11.
Singh, N., & Rajini, P. S. (2004). Free radical scavenging activity of an aqueous extract of potato peel. Food Chemistry, 85(4), 611–616.
Singh, R., Khalid, M., Batra, N., Biswas, P., Singh, L., & Bhatti, R. (2023). Exploring the anticonvulsant activity of aqueous extracts of Ficus benjamina l. Figs in experimentally induced convulsions. Journal of Chemistry, 2023, e6298366.
Tabner, B. J., Mayes, J., & Allsop, D. (2010). Hypothesis: Soluble Aβ oligomers in association with redox-active metal ions are the optimal generators of reactive oxygen species in Alzheimer’s disease. International Journal of Alzheimer’s Disease, 1–6.
Taha, M. S., Fawkeya, A. A., Zeinab, I. E., & Ahmed, M. M. (2011). Two new polyphenolic compounds from Ficus retusa L."variegata" and the biological activity of the different plant extracts. Journal of Pharmacognosy and Phytotherapy, 3(7), 89–100.
Talesa, V. N. (2001). Acetylcholinesterase in alzheimer’s disease. Mechanisms of Ageing and Development, 122(16), 1961–1969.https://doi.org/10.1016/S0047 6374(01)00309-8
The GIMP Development Team. (2019). GIMP. In The GNU Image Manipulation Program (2.10.14) [Computer software]. http://www.gimp.org/
Thies, W., & Bleiler, L. (2013). Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 9, 208–245.
Tripathi, M., Vibha, D., Gupta, P., Bhatia, R., Srivastava, M. V., & Vivekanandhan, S. (2012). Risk factors of dementia in North India: A case-control study. Aging and Mental Health, 16, 228–235.
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
Truchan, M., Tkachenko, H., Buyun, L., & Osadowski, Z. (2015, November 1). Antimicrobial effects of ethanolic extract from Ficus benjamina leaves. https://doi.org/10.13140/RG.2.1.2857.3525
Tyler, S. E. B., & Tyler, L. D. K. (2023). Pathways to healing: plants with therapeutic potential for neurodegenerative diseases. IBRO Neuroscience Reports, 14, 210–234.
Vats, P., Hadjimitova, V., Yoncheva, K., Kathuria, A., Sharma, A., Chand, K., Duraisamy, A. J., Sharma, A. K., Sharma, A. K., Saso, L., & Sharma, S. K. (2014). Chromenone and quinolinone derivatives as potent antioxidant agents. Medicinal Chemistry Research, 23(11), 4907–4914.
Vauzour, D. (2012). Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects. Oxidative Medicine and Cellular Longevity, 2012, e914273. https://doi.org/10.1155/2012/914273
Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
Vriend, G. (2014). YASARA View—Molecular graphics for all
devices—From smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982.
Wagner, A. E., Piegholdt, S., Rabe, D., Baenas, N., Schloesser, A., Eggersdorfer, M., Stocker, A., & Rimbach, G. (2015). Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster. Oncotarget, 6(31), 30568–30578.
Walia, A., Kumar, N., Singh, R., Kumar, H., Kumar, V., Kaushik, R., & Kumar, A. P. (2022). Bioactive compounds in Ficus fruits, their bioactivities, and associated health benefits: A Review. Journal of Food Quality, 2022, e6597092. https://doi.org/10.1155/2022/6597092
Wang, Y.-X., Ren, Q., Yan, Z.-Y., Wang, W., Zhao, L., Bai, M., Wang, X.-B., Huang, X.-X., & Song, S.-J. (2017). Flavonoids and their derivatives with β-amyloid aggregation inhibitory activity from the leaves and twigs of Pithecellobium clypearia Benth. Bioorganic & Medicinal Chemistry Letters, 27(21), 4823–4827.
Wen, W., Li, P., Liu, P., Xu, S., Wang, F., & Huang, J. H. (2022). Post-translational modifications of bace1 in alzheimer’s disease. Current Neuropharmacology, 20(1), 211–222.
Xu, Z., Chen, S., Li, X., Luo, G., Li, L., & Le, W. (2006). Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochemical Research, 31(10), 1263–1269. https://doi.org/10.1007/s11064-006-9166-z
Yarmolinsky, L. (2012). Potent antiviral flavone glycosides from Ficus benjamina leaves. Fitoterapia, 83(2), 362–367.
Youn, K., Ho, C.-T., & Jun, M. (2022). Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: An overview of pre-clinical studies focused on β-amyloid peptide. Food Science and Human Wellness, 11(3), 483–493. https://doi.org/10.1016/j.fshw.2021.12.006
Zhao, L., Wang, J. L., Wang, Y. R., & Fa, X. Z. (2013). Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Research, 1492, 33–45.
Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer’s disease”. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2013/316523
Zhe Ying Ha, Shintu Mathew, & Keng Yoon Yeong. (2020). Butyrylcholinesterase: A multifaceted pharmacological target and tool. Current Protein and Peptide Science, 21(1), 99–109.
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Julius I. Olawuni, Michael O. Daniyan, Olatomide A. Fadare, Gbohunmi P. Idowu, Efere M. Obuotor (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.