Tyrosinase Inhibition, Antioxidant Activity, and Bioactive Compound Profiling in Acetone Extracts of Erythrophleum suaveolens Stem Bark
DOI:
https://doi.org/10.4314/njbmb.v39i3.6Abstract
This study investigates the inhibitory activity of Erythrophleum suaveolens bark extracts on mushroom tyrosinase, a key enzyme in melanin synthesis, as well as ascertaining the antioxidant properties and elucidating the phyto-constituents in the most potent extract. Extracts were obtained using five solvents: n-hexane, dichloromethane, acetone, methanol, and distilled water. Among these, the acetone extract demonstrated the best tyrosinase inhibitory activity compared to the enzyme standard inhibitor, kojic acid, at the highest concentration (400 µg/ml). Specifically, the acetone extract demonstrated an inhibitory activity value at 50% inhibition (IA50) of 39.2 ± 0.20 µg/ml for mushroom tyrosinase diphenolase activity, surpassing other extracts, including hexane (65.8 ± 1.06 µg/ml) and kojic acid (45.1 ± 0.10 µg/ml). Furthermore, the acetone extract showed dose-dependent antioxidant properties, with ferric reducing antioxidant power of 57.16 ± 0.11 mg vitamin C/g extract, DPPH radical scavenging activity of 118.7 ± 0.16%, and iron chelating activity of 26.4 ± 0.07% at the highest concentration (100 µg/ml), suggesting potential de-pigmenting effects. High-performance liquid Chromatography (HPLC) analysis, which separates, identifies and quantifies extract components via an acetonitrile/water (80:20, v/v) mobile phase and a Phenyl stationary phase, revealed a rich flavonoid content in the acetone extract, with rutin (1.418 ppm) and quercetin (4.758 ppm) being the most prominent compounds. This bioactive compound profile reveals the inhibitory properties of the E. suaveolens acetone extract and underscores its potential as a natural tyrosinase inhibitor with promising implications for improving skin appearance and health.
Downloads
References
Abdelsalam, S., Abdelsalam, S., Abdallah, B., Ali, E., Veeraraghavan, V., Sivalingam, K., Al-Ramadan, S., Rajendran, P., and Rajendran, P. (2023). Polyphenols mediate neuroprotection in cerebral ischemic stroke—An update. Nutrients, 15(5), 1107.
Akanji, C.O. and Adewumi, B. (2020). Phytochemical, Mineral Contents and Proximate Compositions of the Stem Bark of Erythrophleum suaveolens Brenan (Guill. & Perr.). Iconic Research and Engineering Journals, 3(10), 89-97.
Brunken, U., Schmidt, M., Dressler, S., Janssen, T., Thiombiano, A. and Zizka, G. (2008). West African plants-A Photo Guide. www.westafricanplants.senckenberg.de.-Forschungsinstitut Senckenberg, Frankfurt/Main, Germany.
Cestari, T.F., Dantas, L.P. & Boza, J.C. (2014). Acquired hyperpigmentations. Anais Brasileiros de Dermatology, 89(1): 11-25.
Chang, T.S. (2009). An updated review of tyrosinase inhibitors". International Journal of Molecular Sciences, 10(6): 2440–2475.
Christy, A.O. and Bamidele, A. (2020). Phytochemical, Mineral Contents and Proximate Compositions of the Stem Bark of Erythrophleum suaveolens Brenan.
Harbone, J.B. and Williams, C.A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55: 481-504.
Huang, S.S., Huang, G.J. and Yo, Y.L. (2008). Antioxidant and antiproliferative activities of the four hydrocotyle species from taiwan. Botanical Studies, 49: 311-322
Jacques, D.K., Barthlemy, K.A., Claude, L.A.K., Faustin, A.K., Paul, A.K., Sandrine, A., Sissouma, D., Blandine, S., Karine, L., Jean-Christophe, J. and Mehdi, A.B. (2019). New cassane diterpenoids from the root bark of erythrophleum suaveolens. Phytochemistry Letters, 31, 166-169
Khatib, S., Nerya, O., Musa, R., Tamir, S., Peter, T. and Vaya, J. (2007). Enhanced substituted resorcinol hydrophobicity augments tyrosinase inhibition potency. Journal of Medicinal Chemistry, 50: 2676–2681.
Krasavin, M., Mujumdar, P., Parchinsky, V., Vinogradova, T., Manicheva, O., and Dogonadze, M. (2015). Library of diversely substituted 2-(quinolin-4-yl) imidazolines delivers novel non-cytotoxic antitubercular leads. Journal of Enzyme Inhibition and Medicinal Chemistry. https://doi.org/10.3109/14756366.2015.1101094
Koga, S., Nakano, M. and Terokubota, S. (1992). Generation of superoxide during the enzymatic action of tyrosinase. Archives of Biochemistry and Biophysics, 292: 570–575.
Lee, S.Y., Baek, N. and Nam, T. (2015). Natural, semisynthetic and synthetic tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1): 1-13.
Liu, J., Wu, F., Chen, L., Zhao, L., Zhao, Z., Wang, M. and Lei, S. (2012). Biological evaluation of coumarin derivatives as mushroom tyrosinase inhibitors. Food Chemistry, 135: 2872-2878.
Loizzo, M.R., Tundis, R. and Menichini, F. (2012). Natural and synthetic tyrosinase inhibitors as antibrowning agents: An update. Comprehensive Reviews in Food Science and Food Safety, 11: 378-398.
Maroyi A. (2023). Medicinal uses of the fabaceae family in zimbabwe: A review. Plants. 12(6):1255-
Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. and D'Alessandro, A.G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2):48-78.
Momtaz, S., Mapunya, B. M., Houghton, P. J., Edgerly, C., Hussein, A., Naidoo, S. and Lall, N. (2008). Tyrosinase
inhibition by extracts and constituents of sideroxylon inerme l. stem bark, used in South Africa for skin lightening Journal of Ethnopharmacology 119: 507–512.
Nam, P.N., Lien, P.T.K., Hoa, T.T. and Dao, C.M.H. (2017). Microwave-assisted Soxhlet extraction of essential oil from vietnamese star anise fruits (Illicium verum Hook. f.) and their chemical composition. Emirates Journal of Food and Agriculture, 131-137.
Omotoyinbo, O.V., Awojolu, E.O. and Sanni, D.M. (2020). Phytochemical screening, antioxidant and tyrosinase inhibitory studies of methanol leaf extracts of two tomato varieties. Highlights in Bioscience, 3: 1-7.
Pieroni, A., Cassandra, L., Villanelli, M., Mangino, P., Sabbatini, G., Boccetti, T., Ciccioli, T., Antonin, G., Girolamini, C., Cecchi, M. and Tomasi, M. (2004). Ethnopharmacognostic survey on the natural ingredients in folk cosmetics, cosmeceuticals and remedies skin disease in the inland Marches, Central-Eastern Italy, Journal of Ethnopharmacology, 91: 331-344.
Pillaiyar, T., Manickam, M. and Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme inhibition and medicinal chemistry, 32(1): 403-425.
Pulido, R., Bravo, L. and Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing or antioxidant power assay. Journal of Agriculture and Food Chemistry, 48(8): 3396-3402.
Puntel, R.L., Nogueira, C.W. and Rocha, J.B.T. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (tbars) production in rat brains in vitro. Neurochemistry Research, 30: 225-235.
Sarangarajan, R. and Apte, S.P. (2006). The polymerisation of melanin: a poorly understood phenomenon with egregious biological implications. Melanoma Research, 16(1): 3-10.
Sharifi-Rad, J., Rodrigues, C. F., Sharopov, F., Docea, A. O., Karaca, A. C., Sharifi-Rad, M., Kahveci Karincaoglu, D., Gulseren, G., Senol, E., Demircan, E., Taheri, Y., Suleria, H. A. R., Ozcelik, B., Kasapoglu, K. N., Gultekin-Ozguven, M., Daskaya-Dikmen, C., Cho, W. C., Martins, N., and Calina, D. (2020). Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. International Journal of Environmental Research and Public Health, 17(7),2326 -
Simon, J.D., Peles, D., Wakamatsu, K. and Ito, S. (2009). Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function. Pigment Cell Melanoma Research, 22: 563–79.
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Oluwasegun V. Omotoyinbo, David M. Sanni, Blessing I. Omotoyinbo (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.