Protective Effects of Moringa oleifera Leaf Extract and Quercetin Against Mercury-Induced Reproductive and Hepatic Toxicity in Rats

Authors

  • Gabriel O. Oludare Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Nigeria Author https://orcid.org/0000-0003-3301-3660
  • Jamiu O. Sanni Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Nigeria Author
  • Bolanle O. Iranloye Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v40i1.4

Keywords:

Keywords: Antioxidants, Mercury chloride, Moringa, Quercetin, Reproduction,

Abstract

Mercury chloride (HgCl₂) is a toxic heavy metal known to adversely affect various physiological systems, including the male reproductive system. This study evaluated the protective effects of M. oleifera extract and quercetin, against HgCl₂-induced reproductive and hepatic toxicity in experimental rats. Thirty (30) male Sprague Dawley rats were randomly assigned to six groups (n = 6): Control (no treatment), HgCl₂ (4 mg/kg), HgCl₂ + M. oleifera (30 mg/kg), HgCl₂ + quercetin (30 mg/kg), M. oleifera alone, and quercetin alone. All substances were administered orally for 30 days. Following treatment, blood and tissue samples (liver, testes and epididymis) were collected for biochemical, histological, and semen analyses. Rats exposed to HgCl₂ showed significant reductions in liver, testes, and epididymis weights, along with impaired sperm parameters (count, motility, viability) and decreased serum testosterone levels (p < 0.05). Co-treatment of HgCl2 with M. oleifera or quercetin significantly improved these outcomes, restoring reproductive indices toward normal levels. Antioxidant activity was enhanced in the treatment groups, evidenced by significant increases in superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT), with a significant decrease in malondialdehyde (MDA), indicating reduced oxidative stress. Additionally, liver enzyme profiles and the TC/HDL cholesterol index improved significantly (p < 0.05). Histological evaluation revealed partial restoration of testicular architecture in treated groups, while epididymal tissues remained unaffected. These findings suggest that M. oleifera extract and quercetin mitigate mercury-induced testicular and oxidative damage, highlighting their potential as adjunct therapies in managing heavy metal-induced reproductive dysfunction.

Downloads

Download data is not yet available.

References

Aarab, N., Minier, C., Lemaire, S., Unruh, E., Hansen, P. D., Larsen, B. K., Andersen, O. K., & Narbonne, J. F. (2004). Biochemical and histological responses in mussel (Mytilus edulis) exposed to North Sea oil and a mixture of North Sea oil and alkylphenols. Marine Environmental Research, 58, 437–441. https://doi.org/10.1016/j.marenvres.2004.03.121

Abarikwu, S. O., Benjamin, S., Ebah, S. G., Obilor, G., & Agbam, G. (2017a). Oral administration of Moringa oleifera oil but not coconut oil prevents mercury-induced testicular toxicity in rats. Andrologia, 49(1), e12597. https://doi.org/10.1111/and.12597

Abarikwu, S. O., Benjamin, S., Ebah, S. G., Obilor, G., & Agbam, G. (2017b). Protective effect of Moringa oleifera oil against HgCl₂ induced hepato and nephro toxicity in rats. Journal of Basic and Clinical Physiology and Pharmacology, 28(4), 337–345. https://doi.org/10.1515/jbcpp-2016-0166

Abasilim, C., Persky, V., & Turyk, M. E. (2023). Association of blood total mercury with dyslipidemia in a sample of U.S. adolescents: Results from the National Health and Nutrition Examination Survey database, 2011–2018. Hygiene and Environmental Health Advances, 6, 100047. https://doi.org/10.1016/j.heha.2023.100047

Aebi, H. (1984). Catalase in vitro. In H. U. Bergmeyer (Ed.), Methods in Enzymology (Vol. 105, pp. 121–126). Academic Press.

Ahmed, N. F., Sadek, K. M., Soliman, M. K., Khalil, R. H., Khafaga, A. F., Ajarem, J. S., Maodaa, S. N., & Allam, A. A. (2020). Moringa oleifera leaf extract repairs the oxidative misbalance following sub chronic exposure to sodium fluoride in Nile tilapia Oreochromis niloticus. Animals, 10(4), 626. https://doi.org/10.3390/ani10040626

Akarsu, S. A., Gür, C., Küçükler, S., Akaras, N., İleritürk, M., & Kandemir, F. M. (2024). Protective effects of syringic acid against oxidative damage, apoptosis, autophagy, inflammation, testicular histopathologic disorders, and impaired sperm quality in the testicular tissue of rats induced by mercuric chloride. Environmental Toxicology, 39(10), 4803–4814.

Asgari Kafrani, A., Fazilati, M., & Nazem, H. (2020). Hepatoprotective and antioxidant activity of aerial parts of Moringa oleifera in prevention of non-alcoholic fatty liver disease in Wistar rats. South African Journal of Botany, 129, 82–90. https://doi.org/10.1016/j.sajb.2020.06.010

Boujbiha, M. A., Hamden, K., Guermazi, F., Bouslama, A., Omezzine, A., Kammoun, A., & El Feki, A. (2009). Testicular toxicity in mercuric chloride treated rats: Association with oxidative stress. Reproductive Toxicology, 28(1), 81–89. https://doi.org/10.1016/j.reprotox.2009.03.011

Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

Caglayan, C., Kandemir, F. M., Darendelioğlu, E., Yıldırım, S., Küçükler, S., & Dortbudak, M. B. (2019). Rutin ameliorates mercuric chloride induced hepatotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. Journal of Trace Elements in Medicine and Biology, 56, 60–68. https://doi.org/10.1016/j.jtemb.2019.03.020

Carrillo Martinez, E. J., Flores Hernández, F. Y., Salazar Montes, A. M., Nario Chaidez, H. F., & Hernández Ortega, L. D. (2024). Quercetin, a flavonoid with great pharmacological capacity. Molecules, 29(5), 1000. https://doi.org/10.3390/molecules29051000

Dafaalla, M. M., Hassan, A. W., Idris, O. F., Abdoun, S., Modawe, G. A., & Kabbashi, A. S. (2016). Effect of ethanol extract of Moringa oleifera leaves on fertility hormone and sperm quality of male albino rats. World Journal of Pharmacy and Research, 5, 1–11.

Debajyoti, D., Dipsundar, S., Dinesh, B., Chandreyee, R., Sanatan, R., & Jayram, H. (2017). Moringa oleifera (shigru): A miracle tree for its nutritional, ethnomedicinal and therapeutic importance. International Journal of Development Research, 7(11), 16823–16827

El Desoky, G. E., Bashandy, S. A., Alhazza, I. M., Al Othman, Z. A., Aboul Soud, M. A., & Yusuf, K. (2013). Improvement of mercuric chloride induced testis injuries and sperm quality deteriorations by Spirulina platensis in rats. PLOS ONE, 8(3), e59177. https://doi.org/10.1371/journal.pone.0059177

Goudarzi, M., Kalantar, M., & Kalantar, H. (2017). The hepatoprotective effect of gallic acid on mercuric chloride induced liver damage in rats. Jundishapur Journal of Natural Pharmaceutical Products, 12(4), e12345.

Gunzler, W. A. (1985). Glutathione peroxidase. In CRC Handbook of Methods for Oxygen Radical Research (pp. 285–290). CRC Press.

Jabłońska Trypuć, A., & Wiater, J. (2022). Protective effect of plant compounds in pesticide toxicity. Journal of Environmental Health Science and Engineering, 20(2), 1035–1045. https://doi.org/10.1007/s40201-022-00823-0

Jin, F., Li, J., Zhao, C., Gu, L., Pu, M., Jiang, S., Liang, M., Zhao, Y., Shen, J., Agabuwei, A., Han, Q., & Liao, D. (2024). Quercetin alleviates kidney damage caused by mercury chloride: The protective effects of quercetin on autophagy and inflammation studied based on TRIM32/TLR4/LC3 pathway. Toxicon, 248, 108031. https://doi.org/10.1016/j.toxicon.2024.108031

Kandemir, F. M., Caglayan, C., Aksu, E. H., Yildirim, S., Küçükler, S., Gür, C., & Eser, G. (2020). Protective effect of rutin on mercuric chloride induced reproductive damage in male rats. Andrologia, 52(3), e13524. https://doi.org/10.1111/and.13524

Kang, P., Shin, H. Y., & Kim, K. Y. (2021). Association between dyslipidemia and mercury exposure in adults. International Journal of Environmental Research and Public Health, 18(2), 775. https://doi.org/10.3390/ijerph18020775

Khazaeel, K., Daaj, S. A. Z., Sadeghi, A., Tabandeh, M. R., & Basir, Z. (2022). Potential protective effect of quercetin on the male reproductive system against exposure of Wistar rats to crude oil vapor: Genetic, biochemical, and histopathological evidence. Reproductive Toxicology, 113, 10–17. https://doi.org/10.1016/j.reprotox.2022.04.010

Kruger, T. F., Ackerman, S. B., Simmons, K. F., Swanson, R. J., Brugo, S. S., & Acosta, A. A. (1987). A quick, reliable staining technique for human sperm morphology. Archives of Andrology, 18, 275–277. https://doi.org/10.3109/01485018708988493

Lettieri, G., Carusone, N., Notariale, R., Prisco, M., Ambrosino, A., Perrella, S., Manna, C., & Piscopo, M. (2022). Morphological, gene, and hormonal changes in gonads and increased micrococcal nuclease accessibility of sperm chromatin induced by mercury. Biomolecules, 12(1), 87. https://doi.org/10.3390/biom12010087

Li, S., Wang, X., Xiao, Y., Wang, Y., Wan, Y., Li, X., Li, Q., Tang, X., Cai, D., Ran, B., & Wu, C. (2021). Curcumin ameliorates mercuric chloride induced liver injury via modulating cytochrome P450 signaling and the Nrf2/HO 1 pathway. Ecotoxicology and Environmental Safety, 208, Article 111426. https://doi.org/10.1016/j.ecoenv.2020.111426

Martinez, C. S., Torres, J. G., Peçanha, F. M., Anselmo Franci, J. A., Vassallo, D. V., Salaices, M., Alonso, M. J., & Wiggers, G. A. (2014). 60 day chronic exposure to low concentrations of HgCl₂ impairs sperm quality: hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats. PLOS ONE, 9(11), e111202. https://doi.org/10.1371/journal.pone.0111202

Massányi, P., Massányi, M., Madeddu, R., Stawarz, R., & Lukáč, N. (2020). Effects of cadmium, lead, and mercury on the structure and function of reproductive organs. Toxics, 8(4), 94. https://doi.org/10.3390/toxics8040094

Miller, L. B., Feuz, M. B., Meyer, R. G., & Meyer Ficca, M. L. (2024). Reproductive toxicology: keeping up with our changing world. Frontiers in Toxicology, 6, Article 1456687. https://doi.org/10.3389/ftox.2024.1456687

Mitra, S., Chakraborty, A. J., Yoreq, A. M., Emran, T. B., Nainu, F., Khusra, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34(3), Article 101865. https://doi.org/10.1016/j.jksus.2022.101865

Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Orisakwe, O. E., Afonne, O. J., Nwobodo, E., Asomugha, L., & Dioka, C. E. (2001). Low dose mercury induces testicular damage protected by zinc in mice. European Journal of Obstetrics & Gynecology and Reproductive Biology, 95, 92–96. https://doi.org/10.1016/S0301-2115(00)00402-5

Oyewopo, A. O., Adeleke, O., Johnson, O., Akingbade, A., Olaniyi, K. S., Areola, E. D., & Tokunbo, O. (2021). Regulatory effects of quercetin on testicular histopathology induced by cyanide in Wistar rats. Heliyon, 7(7), e07662. https://doi.org/10.1016/j.heliyon.2021.e07662

Padayachee, B., & Baijnath, H. (2020). An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. South African Journal of Botany, 129, 304–316. https://doi.org/10.1016/j.sajb.2020.06.012

Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A., & Chuturgoon, A. A. (2023). Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. International Journal of Molecular Sciences, 24(3), 2098. https://doi.org/10.3390/ijms24032098

Prabsattroo, T., Wattanathorn, J., Iamsaard, S., Somsapt, P., Sritragool, O., Thukhummee, W., & Muchimapura, S. (2015). Moringa oleifera extract enhances sexual performance in stressed rats. Journal of Zhejiang University Science B, 16(2), 179–187. https://doi.org/10.1631/jzus.B1400125

Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28(1), 56–63.

Shalan, M. G. (2022). Amelioration of mercuric chloride induced physiologic and histopathologic alterations in rats using vitamin E and zinc chloride

supplement. Heliyon, 8(12), e12036. https://doi.org/10.1016/j.heliyon.2022.e12036

Shin, Y. J., Kim, J. J., Kim, Y. J., Kim, W. H., Park, E. Y., Kim, I. Y., Shin, H. S., Kim, K. S., Lee, E. K., Chung, K. H., Lee, B. M., & Kim, H. S. (2015). Protective effects of quercetin against HgCl₂ induced nephrotoxicity in Sprague Dawley rats. Journal of Medicinal Food, 18(5), 524–534. https://doi.org/10.1089/jmf.2014.0156

Sun, M., & Zigman, S. (1978). An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Analytical Biochemistry, 90(1), 81–89. https://doi.org/10.1016/0003-2697(78)90010-6

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In Experientia Supplementum (Vol. 101, pp. 133–164). https://doi.org/10.1007/978-3-7643-8340-4_6

Tshabalala, T., Ndhlala, A. R., Ncube, B., Abdelgadir, H. A., & Van Staden, J. (2020). Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. South African Journal of Botany, 129, 106–112. https://doi.org/10.1016/j.sajb.2020.06.015

Vanithasri, V., & Jagadeesan, G. (2023). In vivo ameliorative potential effect of N acetylcysteine and gallic acid against hepatotoxicity induced by mercuric chloride in Wistar rats. Uttar Pradesh Journal of Zoology, 44(9), 59–69.

Vergara Jimenez, M., Almatrafi, M. M., & Fernandez, M. L. (2017). Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 6(4), 91. https://doi.org/10.3390/antiox6040091

Verrill, H. L., Pickard, N. A., & Gruemer, H. D. (1997). Mechanisms of cellular enzyme release. I. Alteration in membrane fluidity and permeability. Clinical Chemistry, 23(12), 2219–2225.

Yelumalai, S., Giribabu, N., Karim, K., Omar, S. Z., & Salleh, N. B. (2019). In vivo administration of quercetin ameliorates sperm oxidative stress, inflammation, preserves sperm morphology and functions in streptozotocin nicotinamide induced adult male diabetic rats. Archives of Medical Science, 15(1), 240–249. https://doi.org/10.5114/aoms.2017.66180

Zade, S. V., Dabhadkar, K. D., Thakare, V. G., & Pare, R. S. (2013). Effect of aqueous extract of Moringa oleifera seed on sexual activity of male albino rats. Biological Forum, 5, 129–140.

Zemjanis, R. (1970). Collection and evaluation of semen. In Diagnostic and Therapeutic Techniques in Animal Reproduction (2nd ed., p. 467–523)

Additional Files

Published

2025-10-31

Data Availability Statement

Data available

How to Cite

Protective Effects of Moringa oleifera Leaf Extract and Quercetin Against Mercury-Induced Reproductive and Hepatic Toxicity in Rats. (2025). Nigerian Journal of Biochemistry and Molecular Biology, 40(1), 24-32. https://doi.org/10.4314/njbmb.v40i1.4