Antioxidant, Anti-inflammatory, and Anticancer Potentials of Ethyl acetate Extract of Andira inermis Stem Bark

Authors

  • Daniel Dahiru Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria
  • Hauwa A. Umaru Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria
  • Margaret S. Nadro Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria
  • Mohammed I. Bello Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria

DOI:

https://doi.org/10.2659/njbmb..106

Abstract

Inflammation is a prominent factor implicated in many diseases. Cancer being one of such disease is the second leading cause of death globally. In this study, the antioxidant activity of different extracts of Andira inermis stem bark was investigated. Further, the ethyl acetate extract was studied for anti-inflammatory and anticancer activities. Successive extraction of A. inermis stem bark with different solvents of increasing polarity gave significantly (p < 0.05) different extracts yields between 3.94 g (1.31%) to 21.66 g (7.22%). Ethyl acetate had a significant amount of total phenolics (133.28 ± 3.20 mg GAE/g) and flavonoids (117 ± 2.96 mg QE/g) when compared to other extracts. The ethyl acetate extract showed significant antioxidant activity using DPPH and ABTS assays with IC50 of 56.11 μg/mL and 35.13 μg/mL respectively. Carrageenan administration resulted in a significant increase in the paw thickness of rats compared to control. Ethyl acetate extract treatment gave a significant reduction in paw size from 1st to 5th hour compared to the negative control group. Treatment of HepG-2 and MCF-7 cell lines with different concentrations of ethyl acetate extract produced IC50 values of 247.26 μg/mL and 365 μg/mL respectively. The antioxidant, anti-inflammatory and anticancer activities of ethyl acetate extract were evidently due to the high total phenolics and flavonoids. The ethyl acetate extract of A. inermis could be used as a potential source of antioxidant, anti-inflammatory, and anticancer agents.

Downloads

Download data is not yet available.

Author Biography

Hauwa A. Umaru, Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria

Department of Biochemistry, Faculty of Life Sciences, Modibbo Adama University, Yola, Nigeria

References

Adebisi, Q. B., Andrew, D., Gozomji, D., Bwede, D. D. and Emeka, A. (2021). Evaluation of the antibacterial and chromatographic activity of the stem bark of Andirainermis (Cabbage tree). International Journal of Research and Innovation Applied Sciences , VI(VII): 8-10

Afzal, T., Bidi, Y., Ishaque, M., Mashood, S., Qayyum, A., Nisa, S., Shah, Z. H., Alsamadany, H. and Chung, G. (2022). Pharmacological properties and preliminary phytochemical analysis of Pseudocaaryopterisfoetida (D.Don) P.D. Cantino leaves. Saudi Journal of Biological Science, 29: 1185-1190. https://doi.org/10.1016/j.sjbs.2021.09.0488

Ajayi, G.O., Olagunju, J.A., Ademuyiwa, O. and Martuns, O.C. (2011) Gas chromatography-mass spectrometry analysis and phytochemical screening of ethanolic root extract of Plumbago zeylanica Linn. Journal of Medicinal Plants Research, 9: 1756-1761

Arteeaga-Crespo, Y., Radice, M., Bravo-Sanchez, L.R., Garcia-Quintana, Y. and Scalvenzi, L. (2020). Optimization of ultrasound-associated extraction of phenolic antioxidants from Ilex guayusa Loes.leaves using response surface methodology. Heliyon, 6 e03043 https://doi.org/j.heliyon.2019.e03043

Badrulhisham, N. S. R., Ab-Hamid, S. N. P., Ismail, M. A. H., Yong, Y.K., Muhammad, Z.N., Harith, H. H., Saidi, H. I. and Nurdin, A. (2020). Harvested locations influence the total phenolic content, antioxidant levels, cytotoxic, and inflammatory activities of stingless bee honey. Journal of Asia-Pacific Entomology, 23: 950-956 https://doi.org/10.1016/j.aspen.2020.07.015.

Baloch, R., Uzair, M., Chauhdary, B.A., Hayat, M.M. and Alamgir, M. (2019).Phytochemical analysis, antioxidant and cytotoxic activities ofDryopteris ramose.Bio-Medical Research, 30(5): 764-769. https://doi.org/10.35841/biomedicalresearch.30-19-3211

Brindza, J., Grygoreva, O., Klymenko, S., Vergun, O., Marecek, J. and Ivanisova, E. (2019).Variation of fruits morphometric parameters and bioactive compounds of Asimina trilobo (L) dunalgermplasm collection. Potravinarstvo Slovak Journal of Food Science, 13(1): 1-7 https://doi.org/10.5219/1019

Brito, T. Gd-S., da-Silva, A. P. A. A., daCunha, R. X., daFonseca, C. S. M., Araujo, T. F. S., Campos, J. K. L. and Nascimento, W. M., Araujo, H. D. A., Silva, J. P. R. E., Tavares, J. F., Santos, B. S. D. and Lima, V. L. M. (2021). Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. Journal of Ethnophamacology, 268:113611 https://doi.org/10.1016/j.jep.2020.113611

Charles-Okhe, O., Odeniyi, M.A., Fakeye, T.O., Ogbole, O.O., Akinleye, T.E. and Adeniji, A. J. (2022). Cytotoxic activity of crude extracts and fractions of African peach (Nauclealatifolia Smith) stem bark on two cancer cell lines. Phytomedicine Plus, 2:100212 https://doi.org/10.1016/j.phyplu.2021.100212

Ding, L., Zhang, X. and Zhang, J. (2021). Antioxidant activity in vitro guided screening and identification of flavonoids antioxidants in the extract from Tetrastigmahemsleyanum Diels etGilg. International Journal of Analytical Chemistry, 2021: 1-11 https://doi.org/10.1155/2021/7195125

Dudonne, S., Vitrac, X., Coutiere, P., Woilleze, M. and Merillon, J. (2009). Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. Journal of Agricultural and Food Chemistry, 57(5): 1768-1774. https://doi.org/10.1021/jf80301/r.

Egua, M. O., Nwinyi, F.C., Okwoche, O.J., Monday, O.M., Ganiyat, A.M., Okwudili, O.S., Garba, M.H., Dezi, A. D. and Mohammed, A. (2020). Evaluation of Andirainermis stem bark extract for hypoglycemic and antioxidant effects. Clinical Phytoscience, 6: 76(1-9). https://doi.org/10.1186/s40816-020-00225-5

Gheena, S. and Ezhilarasan, D. (2019).Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Human and Experimental Toxicology, 38: 694-702. https://doi.org/10.1177/0960327119839173.

Johnson, J., Collins, T., Walsh, K. and Naiker, M. (2020). Solvent extraction and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chemical Paper, 74(12): 4481-4492 https://doi.org/10.1007/s/1696-020-01261-8

Junior, A. G, Souza, P. and Livero, F. A. R. (2019). Plinia caulifolra (Mart.) Kausel: a comprehensive ethnopharmacological review of a genuinely Brazillianspecies. Journal of Ethnopharmacology, 245: 112169 https://doi.org/10.1016/j.jep.2019.112169.

Kale, O. E., Awodele, O., Akindele and A.J. (2019) Subacute and subchronic oral toxicity assessment of Acridocarpuss meathmannii (D.C.) Guill&Perr.root in Wistar rats. Toxicology Report, 6: 161-175 https://doi.org/10.1016/j.toxrep.2019.01.005.

Ken, F. (2014). Tropical plants database.Andirainermis - Useful Tropical Plants (theferns.info) Accessed on 15th March 2022.

Kpemissi, M., Metowogo, K., Melila, M., Veerapur, V. P., Negru, M., Taulescu, M., Potarniche, A. V., Suhas, D. S., Puneeth, T.A., Vijayakumar, S., Eklu-Gadegbeku, K. and Aklikokou, K. (2020). Acute and subchronic oral toxicity assessment of Combretum micranthum (Combretaceae) in Wistar rats.Toxicology Report, 7: 162-168. https://doi.org/10.1016/j.toxrep.2020.01.007

Lar, J., Ervik, M., Lam, F., Colombet, M., Mery, I.M.P. and Al, E. (2020). Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon.https://www.who.int/health.topics/cancer#tab=tab_1.

Li, L. S., Chiroma, S. M., Hashim, T., Adam, S. K., Moklas, M. A. M., Yusuf, Z. and Rahman, S. A. (2020). Antioxidant and anti-inflammatory properties of Erythroxylumcuneatum alkaloid leaf extract. Heliyon; e04141.https://doi.org/10.1016/j.heliyon.2020.e04141

Mani, J., Johnson, J., Hosking, H., Walsh, K., Neilsen, P. and Naiker, M. (2022).In vitro cytotoxic properties of crude polar extracts of plants sourced from Australia. Clinical Complementary Medicine and Pharmacology, 2:100022 https://doi.org/10.1016/j.ccmp.2022.100022

Monton, C. and Luprasong, C. (2019).Effect of temperature and duration time of maceration on nitrate content of Vernoniacinerea (L) Less: Circumscribed central composite design and method validation.International Journal of Food Science, 2: 1-8. https://doi.org/10.1155/2019/1281635

Naqbi, K. M. A. A., Karthishwaran, K., Kurup, S. S., Alyafei, M. A. M. and Jaleel, A. (2022). Phytochemicals, proximate composition, mineral analysis and in vitro antioxidant activity of CalligonumcrinitumBoiss.Horticulturae, 8(156): 1-14. https://doi.org/10.3390/horticulturae8020156

Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H. and Ullah, N. (2020).Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Science, 56:e17129 http://dx.doi.org/10.1590/s2175-97902019000417129

Omowumi, O. A., God’swill, N. A., and Odutola, O. (2017). Aqueous fraction of Alstonia boonei de wild leaves suppressed inflammatory responses in carrageenan and formaldehyde-induced arthritic rats. Biomedicine and Pharmacotherapy, 86: 95-101 https://doi.org/10.1016/j.biopha.2016.11.145

Paudel, M. R., Chand, M. B., Pant, B. and Pant, B. (2019). Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules, 9(418).https://doi.org/10.3390/biom9090478

Shadid, K. A., Shakya, A. K., Naik, R.R., Jaradat, N., Farah, H. S., Shalan, N., Khalaf, N.A. and Oriquat, G. A. (2021). Phenolic content and antioxidant and antimicrobial activities of Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L. leaves extract. Journal of Chemistry, ID 8867400: 1-10 https://doi.org/10.1155/2021/8867400

Sofowora, A. (1993). Screening plants for bioactive agents, in: Medicinal Plants and Traditional Medicine in Africa, 2ndedn., Spectrum Books Ltd, Ibadan Nigeria. Pp 134-156

Subhasree, B., Baskar, R., Keerthana, R. L, Susan, R. L. and Rajasekran, P. (2009). Evaluation of antioxidant potential in selected leafy vegetables. Food Chemistry, 115(4): 1213-1220 https://doi.org/10.1016/j.foodchem.2009.01.029

Trease, G. E. and Evans, W. C. (2002). Pharmacognosy. W.B. Sunders, 15thedn., W.B. Sunders Company. P 406

Ugwah-Oguejiofor, C. J., Okoli, C. O., Ugwah, M. O., Umaru, M. I., Ogbulie, C. S., Mshelia, H. E., Umar, M. and Njan, A. A. (2019). Acute and sub-acute toxicity of aqueous extract of aerial part of Caralluma dalziellii N.E. Brown in mice and rats. Heliyon, 5(1): e01179 https://doi.org/10.1016/j.heliyon.2019.e01179.

Wahid, S., Alqahtani, A. and Khan, R. A. (2021). Analgesic and anti-inflammatory effects and safety profile of Curcurbita maxima and Cucumis sativus seeds. Saudi Journal of Biological Science, 28: 4334-4341. https://doi.org/10.1016/j.sjbs.2021.04.020

Wairata, J., Fadlan, A., Purnomo, A. S., Taher, M. and Ersam, T. (2022). Total phenolic and flavonoid contents, antioxidant, antidiabetic and antiplasmodial activities of Garciniaforbesii King: A correlation study. Arabian Journal of Chemistry, 15: 1-8 https://doi.org/10.1016/j.arabjc.2021.103541

Wang, J., Xu, X., Gong, M., Yang, C., Zhang, M. and Li, J. (2019). Biosynthesis, chemistry, and pharmacology of polyphenols from Chinese salvia species: a review. Molecules, 24:15 https://doi.org/10.3390/molecules240101555

Published

2022-12-30

How to Cite

Dahiru, D., Umaru, H. A., Nadro, M. S., & Bello, M. I. (2022). Antioxidant, Anti-inflammatory, and Anticancer Potentials of Ethyl acetate Extract of Andira inermis Stem Bark. Nigerian Journal of Biochemistry and Molecular Biology, 37(4), 289–297. https://doi.org/10.2659/njbmb.106