Chrysin Attenuates Osteoporosis-induced Hyperlipidemia and Oxidative Damage in Ovariectomized Rats


  • Sanusi B. Mada Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Muhammad A. Saliu Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Sadiyat O. Ibrahim Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Muawiya M. Abarshi Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Auwalu Garba Department of Biochemistry Author
  • Nasiru A. Garba Department of Biochemistry, Federal University Gusau, Nigeria Author
  • Abubakar Shuaibu Department of Biochemistry Author
  • Ahmad B. Hamza Department of Biochemistry Author
  • Aminu M. Jabbi Department of Biological Sciences, Federal University Gusau, Nigeria Author


Ovariectomy, Osteoporosis, Hyperlipidemia, Oxidative damage, Chrysin


Cardiovascular disease and postmenopausal osteoporosis are age-related diseases with high morbidity and mortality across the globe, especially in the elderly women. This study investigates the potential effects of chrysin (CHR) in osteoporosis-induced hyperlipidemia and oxidative liver damage in ovariectomized rats. Twenty-five female Wistar rats were used; 20 rats were ovariectomized (OVX) while 5 rats were sham-operated. The experimental rats were treated daily for a period of six weeks. CHR treatment alleviated body weight gain (p<0.01) in OVX rats. In addition, CHR significantly (p<0.05) reduced total cholesterol, triacylglycerol and low-density lipoprotein with a simultaneous increase in high-density lipoprotein levels in OVX rats in a dose-dependent manner in comparison to untreated OVX rats. Moreover, treatment of OVX rats with CHR significantly (p<0.05) reduced malondialdehyde level and improved reduced glutathione level, superoxide-dismutase and catalase activities. Furthermore, treatment of OVX rats with CHR significantly (p<0.01) suppressed alanine-aminotransferase and aspartate-aminotransferase activities in liver tissue compared to the untreated OVX rats. Conversely, treatment of OVX rats with CHR significantly (p<0.05) attenuated reduction in femur bone calcium, phosphorus, magnesium and zinc contents altered by ovariectomy compared with untreated OVX rats. This study demonstrated that CHR reduced symptoms of osteoporosis-induced hyperlipidemia and oxidative damage in OVX rats. Our data suggest that CHR, a natural antioxidant, may potentially protect against postmenopausal osteoporosis linked to cardiovascular disease.


Download data is not yet available.

Author Biography

  • Muhammad A. Saliu, Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria




Abuohashish, H. M., Ahmed, M. M., Al-Rejaie, S. S. and Eltahir, K. E. (2015). The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacologica Sinica, 36(2): 209-220.

Aebi, H. and Bergmeyer, H. (1974). Methods in enzymatic analysis. NY, Academic Press. 673-684.

Al-Safi, Z.A. and Polotsky, A.J. (2015). Obesity and menopause. Best Practice and Research Clininical Obstetrics and Gynaecology, 29(4): 548–553.

Anagnostis, P., Karagiannis, A., Kakafika, A. I., Tziomalos, K., Athyros, V. G., and Mikhailidis, D. P. (2009). Atherosclerosis and osteoporosis: age-dependent degenerative processes or related entities?. Osteoporosis International, 20(2): 197-207.

Anagnostis, P., Stevenson, J. C., Crook, D., Johnston, D. G., and Godsland, I. F. (2015). Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions. Maturitas, 81(1): 62-68.

Anandhi, R., Annadurai, T., Anitha, T. S., Muralidharan, A. R., Najmunnisha, K., Nachiappan, V., ... and Geraldine, P. (2013). Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. Journal of Physiology and Biochemistry, 69(2): 313-323.

Baek, K. H., Oh, K. W., Lee, W. Y., Lee, S. S., Kim, M. K., Kwon, H. S., and Kang, M. I. (2010). Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures. Calcified Tissue International, 87(3): 226-235.

Baldini, V., Mastropasqua, M., Francucci, C. and D’Erasmo, E. (2004). Cardiovascular disease and osteoporosis. Journal of Endocrinological Investigation, 28: 69–72.

Balta, C., Herman, H., Boldura, O. M., Gasca, I., Rosu, M., Ardelean, A., and Hermenean, A. (2015). Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway. Chemico-biological Interactions, 240: 94-101.

Basuny, A. M., Arafat, S. M., and El-Marzooq, M. A. (2012). Antioxidant and antihyperlipidemic activities of anthocyanins from eggplant peels. Journal of Pharma Research and Reviews, 2(3): 50-57.

Borrás, C., Sastre, J., García-Sala, D., Lloret, A., Pallardó, F. V., and Viña, J. (2003). Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radical Biology and Medicine, 34(5): 546-552.

Chanet, A., Milenkovic, D., Deval, C., Potier, M., Constans, J., Mazur, A., and Bérard, A. M. (2012). Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. The Journal of Nutritional Biochemistry, 23(5): 469-477.

Chen, Y. H., Yang, Z. S., Wen, C. C., Chang, Y. S., Wang, B. C., Hsiao, C. A., and Shih, T. L. (2012). Evaluation of the structure–activity relationship of flavonoids as antioxidants and toxicants of zebrafish larvae. Food Chemistry, 134(2): 717-724.

Choi, M. J. (2009). Effects of taurine supplementation on bone mineral density in ovariectomized rats fed calcium deficient diet, Nutrition Research and Practice, 3(2): 108-113.

Derby, C. A., Crawford, S. L., Pasternak, R. C., Sowers, M., Sternfeld, B., and Matthews, K. A. (2009). Lipid changes during the menopause transition in relation to age and weight: the study of women's health across the nation. American Journal of Epidemiology, 169(11): 1352-1361.

Divers, J., Register, T. C., Langefeld, C. D., Wagenknecht, L. E., Bowden, D. W., Carr, J. J., and Freedman, B. I. (2011). Relationships between calcified atherosclerotic plaque and bone mineral density in African Americans with type 2 diabetes. Journal of Bone and Mineral Research, 26(7): 1554-1560.

Durak, M. A., Öztanir, M. N., Türkmen, N. B., Ciftci, O., Taşlidere, A., Tecellioğlu, M., and Önder, A. (2016). Chrysin prevents brain damage caused by global cerebralischemia/reperfusion in a C57BL/J6 mouse model. Turkish Journal of Medical Sciences, 46(6): 1926-1933.

Elkomy, M. M., and Elsaid, F. G. (2015). Anti-osteoporotic effect of medical herbs and calcium supplementation on ovariectomized rats. The Journal of Basic and Applied Zoology, 72: 81-88.

Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1): 70-77.

Fridovich, I. (1975). Superoxide dismutases. Annual review of Biochemistry, 44(1): 147-159.

Gao, Q., and Horvath, T. L. (2008). Cross-talk between estrogen and leptin signaling in the hypothalamus. American Journal of Physiology-Endocrinology and Metabolism, 294(5): E817-E826.

Ha, S. K., Moon, E., and Kim, S. Y. (2010). Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neuroscience Letters, 485(3): 143-147.

Handzlik-Orlik, G., Holecki, M., Wilczyński, K., and Duława, J. (2016). Osteoporosis in liver disease: pathogenesis and management. Therapeutic Advances in Endocrinology and Metabolism, 7(3): 128–135.

Hermenean, A., Mariasiu, T., Navarro‑González, I., Vegara‑Meseguer, J., Miuțescu, E., Chakraborty, S., and Pérez‑Sánchez, H. (2017). Hepatoprotective activity of chrysin is mediated through TNF-α in chemically-induced acute liver damage: An in vivo study and molecular modeling. Experimental and Therapeutic Medicine, 13(5): 1671-1680.

Hwang, Y. H., Kang, K. Y., Kim, J. J., Lee, S. J., Son, Y. J., Paik, S. H., and Yee, S. T. (2016). Effects of hot water extracts from Polygonum multiflorum on ovariectomy induced osteopenia in mice. Evidence-Based Complementary and Alternative Medicine, 2016.

Ibrahim, S. O., Mada, S. B., Abarshi, M. M., Tanko, M. S., and Babangida, S. (2021). Chrysin alleviates alteration of bone-remodeling markers in ovariectomized rats and exhibits estrogen-like activity in silico. Human and Experimental Toxicology, 40(12): S125-S136.

Jayakumar, T., Thomas, P. A., and Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science and Emerging Technologies, 10(2): 228-234.

Kamei, Y., Suzuki, M., Miyazaki, H., Tsuboyama-Kasaoka, N., Wu, J., Ishimi, Y., and Ezaki, O. (2005). Ovariectomy in mice decreases lipid metabolism-related gene expression in adipose tissue and skeletal muscle with increased body fat. Journal of nutritional science and vitaminology, 51(2): 110-117.

Kanis, J. A., Johansson, H., Oden, A., and McCloskey, E. V. (2009). Assessment of fracture risk. European journal of radiology, 71(3): 392-397.

Kim, H. K., Jeong, T. S., Lee, M. K., Park, Y. B., and Choi, M. S. (2003). Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clinica chimica acta, 327(1-2): 129-137.

Kim, T. H., Jung, J. W., Ha, B. G., Hong, J. M., Park, E. K., Kim, H. J., and Kim, S. Y. (2011). The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss. The Journal of Nutritional Biochemistry, 22(1): 8-15.

Ko, S. H., and Kim, H. S. (2020). Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients, 12(1): 202.

Lin, S., Huang, J., Fu, Z., Liang, Y., Wu, H., Xu, L., ... and Li, G. (2015). The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcified Tissue International, 96(6): 541-551.

Liu, Y., Song, X., He, J., Zheng, X., and Wu, H. (2014). Synthetic derivatives of chrysin and their biological activities. Medicinal Chemistry Research, 23(2): 555-563.

Mada, S. B., Abarshi, M. M., Garba, A., Sharehu, K. L., Elaigwu, O. P., Umar, M. J., ... and Garba, I. (2020). Hypolipidemic effect of N-acetylcysteine against dexamethasone-induced hyperlipidemia in rats. Calabar Journal of Health Sciences, 3(2): 59-67.

Mada, S. B., Reddi, S., Kumar, N., Kumar, R., Kapila, S., Kapila, R., and Ahmad, N. (2017). Antioxidative peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition, 43: 21-31.

Mada, S. B., Reddi, S., Kumar, N., Vij, R., Yadav, R., Kapila, S., and Kapila, R. (2018). Casein-derived antioxidative peptide prevents oxidative stress-induced dysfunction in osteoblast cells. Pharma Nutrition, 6(4): 169-179.

Mani, R., and Natesan, V. (2018). Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 145: 187-196.

Marotti, T., Sobočanec, S., Mačak-Šafranko, Ž., Šarić, A., Kušić, B., and Balog, T. (2010). Sensitivity to oxidative stress: sex matters. Rad Hrvatske akademije znanostii umjetnosti. Medicinske znanosti, (508= 35): 59-68.

Nian, H., Ma, M. H., Nian, S. S., and Xu, L. L. (2009). Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine, 16(4): 320-326.

Ohkawa, H., Ohishi, N., and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351-358.

Oršolić, N., Goluža, E., Đikić, D., Lisičić, D., Sašilo, K., Rođak, E., ... and Orct, T. (2014). Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. European Journal of Nutrition, 53(5): 1217-1227.

Pushpavalli, G., Kalaiarasi, P., Veeramani, C., and Pugalendi, K. V. (2010). Effect of chrysin on hepatoprotective and antioxidant status in D-galactosamine-induced hepatitis in rats. European Journal of Pharmacology, 631(1-3): 36-41.

Qi, G., Mi, Y., Fan, R., Li, R., Wang, Y., Li, X., ... and Liu, X. (2017). Tea polyphenols ameliorate hydrogen peroxide-and constant darkness-triggered oxidative stress via modulating the Keap1/Nrf2 transcriptional signaling pathway in HepG2 cells and mice liver. RSC Advances, 7(51): 32198-32208.

Razmjou, S., Abdulnour, J., Bastard, J. P., Fellahi, S., Doucet, É., Brochu, M., ... and Prud’homme, D. (2018). Body composition, cardiometabolic risk factors, physical activity, and inflammatory markers in premenopausal women after a 10-year follow-up: a MONET study. Menopause, 25(1): 89-97.

Rhee, Y., Paik, M. J., Kim, K. R., Ko, Y. G., Kang, E. S., Cha, B. S., and Lim, S. K. (2008). Plasma free fatty acid level patterns according to cardiovascular risk status in postmenopausal women. Clinica Chimica Acta, 392(1-2): 11-16.

Samarghandian, S., Azimi-Nezhad, M., Samini, F., and Farkhondeh, T. (2016). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4): 388-393.

Sankar, P., Rajaa-Muthu, P., Bobby, Z., and Sridhar, M.G. (2019). Soy isoflavones (Glycine max) attenuates bilateral ovariectomy (experimental menopause) induced alteration in the hepatic and renal metabolic functions in female Wistar rats. Journal of Clinical Investigation, 9(2): 65-73.

Sathiavelu, J., Senapathy, G. J., Devaraj, R., and Namasivayam, N. (2009). Hepatoprotective effect of chrysin on prooxidant-antioxidant status during ethanol-induced toxicity in female albino rats. Journal of Pharmacy and Pharmacology, 61(6): 809-817.

Satyanarayana, K., Sravanthi, K., Shaker, I. A., Ponnulakshmi, R., and Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine, 6(4): 248.

Savini, I., Catani, M. V., Evangelista, D., Gasperi, V., and Avigliano, L. (2013). Obesity-associated oxidative stress: strategies finalized to improve redox state. International Journal of Molecular Sciences, 14(5): 10497-10538.

Sennerby, U., Melhus, H., Gedeborg, R., Byberg, L., Garmo, H., Ahlbom, A. and Michaëlsson, K. (2009). Cardiovascular diseases and risk of hip fracture. JAMA, 302(15): 1666-1673.

Shuid, A. N., Ping, L. L., Muhammad, N., Mohamed, N., and Soelaiman, I. N. (2011). The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis. Journal of Ethnopharmacology, 133(2): 538-542.

Singh, V., and Chaudhary, A. K. (2011). A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum vent. Indian Journal of Pharmaceutical Sciences, 73(5): 483.

Sobenin, I.A., Myasoedova, V.A., and Orekhov, A.N. (2016). Phytoestrogen-Rich Dietary Supplements in Anti-Atherosclerotic Therapy in Postmenopausal Women. Current Pharmaceutical Design, 22(2): 152–163.

Subramaniam, S., Hedayathullah Khan, H. B., Elumalai, N., and Sudha Lakshmi, S. Y. (2015). Hepatoprotective effect of ethanolic extract of whole plant of Andrographis paniculata against CCl4-induced hepatotoxicity in rats. Comparative Clinical Pathology, 24(5): 1245-1251.

Tankó, L. B., Christiansen, C., Cox, D. A., Geiger, M. J., McNabb, M. A., and Cummings, S. R. (2005). Relationship between osteoporosis and cardiovascular disease in postmenopausal women. Journal of Bone and Mineral Research, 20(11): 1912-1920.

Tian, L., and Yu, X. (2015). Lipid metabolism disorders and bone dysfunction-interrelated and mutually regulated. Molecular Medicine Reports, 12(1): 783-794.

Torréns, J. I., Sutton-Tyrrell, K., Zhao, X., Matthews, K., Brockwell, S., Sowers, M., and Santoro, N. (2009). Relative androgen excess during the menopausal transition predicts incident metabolic syndrome in mid-life women: Study of Women’s Health across the Nation. Menopause, 16(2): 257 – 264.

Wang, J., Qiu, J., Dong, J., Li, H., Luo, M., Dai, X. (2011). Chrysin protects mice from Staphylococcus aureus pneumonia, J. Appl. Microbiol. 111(6): 1551-1558. Wang, J., Qiu, J., Dong, J., Li, H., Luo, M., Dai, X. and Deng, X. (2011). Chrysin protects mice from Staphylococcus aureus pneumonia, Journal of Applied Microbiology, 111(6): 1551-1558.

Yao, W., Cheng, J., Kandhare, A. D., Mukherjee-Kandhare, A. A., Bodhankar, S. L., and Lu, G. (2019). Toxicological evaluation of a flavonoid, chrysin: morphological, behavioral, biochemical and histopathological assessments in rats. Drug and Chemical Toxicology, 44(6), 601-612.

Zago, V., Sanguinetti, S., Brites, F., Berg, G., Verona, J., Basilio, F., and Schreier, L. (2004). Impaired high density lipoprotein antioxidant activity in healthy postmenopausal women. Atherosclerosis, 177(1): 203-210.

Zarzecki, M. S., Araujo, S. M., Bortolotto, V. C., de Paula, M. T., Jesse, C. R., and Prigol, M. (2014). Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicology Reports, 1: 200-208.

Zhang, J. K., Yang, L., Meng, G. L., Yuan, Z., Fan, J., Li, D., and Liu, J. (2013). Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One, 8(2): e57251.

Zhao, M., Yang, Q., Lin, L., Sun, B., and Wang, Y. (2017). Intracellular antioxidant activities of selected cereal phenolic extracts and mechanisms underlying the protective effects of adlay phenolic extracts on H2O2-induced oxidative stress in human erythrocytes. Journal of Functional Foods, 31: 160-171.



How to Cite

Chrysin Attenuates Osteoporosis-induced Hyperlipidemia and Oxidative Damage in Ovariectomized Rats. (2023). Nigerian Journal of Biochemistry and Molecular Biology, 38(2), 83-93.

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.