Phytochemical Composition, Antioxidant and Antitrypanosomal Properties of Leaves and Stem Bark Extract of Detarium microcarpum: An in vitro study

Authors

  • Jonathan U. Emohchonne Federal University https://orcid.org/0000-0002-8576-8910
  • Uche S. Ndidi
  • Aishat S. Kashim
  • Ibrahim Sofiyullahi
  • Sani Binta
  • Ismail Abdulmalik
  • Awai J. Kagbu
  • Abdulyekin Jamila

DOI:

https://doi.org/10.2659/njbmb.2022.24

Abstract

Trypanosomiasis is a major disease in the Africa continent that affects both humans and livestock. This study investigated the phytochemical composition, antioxidant and antitrypanosomal activities of the extracts from Detarium microcarpum leaves and stem bark. Sequential extraction of the plant samples was done with the solvents of increasing polarity and these extracts were assayed for antioxidant properties, phytochemical constituents, and antitrypanosomal (Trypanosoma congolense and Trypanosoma brucei brucei) activity using standard protocols. The result from the phytochemical studies showed that methanolic extract of the stem bark has the highest flavonoid and phenolic contents (596.88 ± 0.13 mgQE/mg of extract and 367.3 ± 15.84 mg/GAE/mg of extract). The in vitro antioxidant study showed that there was no significant difference in the DPPH scavenging activities of the various extracts compared to ascorbic acid. However, aqueous stem bark extract and methanolic extracts of the leaves and stem bark showed a significant difference in H2O2 scavenging activity when compared to ascorbic acid, with an IC50 value of 1227.04 ± 77.19 μg/mL, 109.61 ± 13.38 μg/mL and 447.40 ± 12.04 μg/mL. From the in vitro antitrypanosomal studies, methanolic leaves extract of D. microcarpum showed an efficient antitrypanosomal effect with complete cessation in motility at 5 min against Trypanosoma congolense, and at 10 min against Trypanosoma brucei brucei at the highest concentration of the extract (20 mg/mL). The result of this study shows that the various extracts of D. microcarpum possess possible inhibitory potential against free radicals in addition to its antitrypanosomal effect.

Downloads

Download data is not yet available.

References

Alhakmani, F., Kumar, S. and Khan, S. A. (2013). Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera. Asian Pacific Journal of Tropical Biomedicine, 3(8): 623-627.

Atawodi, S. E., Bulus, T., Ibrahim, S., Ameh, D. A., Nok, A. J. and Mamman, M. (2003): In vitro trypanocidal effect of methanolic extract of some Nigerian Savannah plants. African Journal of Biotechnology. 2(9):317–21

Balogun, E. O., Inaoka, D. K., Shiba, T., Tsuge, C., May, B., Sato, T., Kido, Y., Nara, T., Aoki, T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Michels, P. A. M., Watanabe, Y. I., Moore, A. L., Harada, S. and Kita, K. (2019). Discovery of trypanocidal coumarins with dual inhibition of both the glycerol kinase and alternative oxidase of Trypanosoma brucei brucei. FASEB Journal, 33(11), 13002–13013. https://doi.org/10.1096/fj.201901342R

Chitanga, S. M. (2011). High prevalence of drug resistance in animal trypanosomes without a history of drug exposure. PLoS Neglected Tropical Diseases 5, e1454.

Cross, G. A. M., Kim, H. S. and Wickstead, B. (2014). Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Molecular and Biochemical Parasitology, 195(1): 59–73. https://doi.org/10.1016/j.molbiopara.2014.06.004

David, J., Afolabi, E.O., Olotu, P.N., Ojerinde, S.O., Agwom, F.M. and Ajima, U. (2017). Phytochemical Analysis, Antidiabetic and Toxicity Studies of the Methanolic Leaf Extract of Detarium microcarpum Guill and Perr in Wistar Albino Rats. Journal of Chemical and Pharmaceutical Research, 9(11):55-60.

Deborggraeve, S., Koffi, M., Jamonneau, V., Bonsu, A., Simarro, P., Herdewijn, P. and Buscher, P. (2008). Molecular analysis of archived blood slides reveals atypical human trypanosome Infection. Diagnostic Microbiology and Infectious disease, 61(4): 428-433

Ene, A.C., Atawodi, S. E. and Apeh, Y.E.O. (2014). In vitro and in vivo antitrypanosomal effects of petroleum ether, chloroform and methanol extracts of Artemisia maritima Linn. Journal of Pharmaceutical Research International, 4: 751–758.

Fayera, T., Tereefe, G. and Shibeshi, W. (2014). Evaluation of in vivo antitrypanosomal activity of curude extracts of Artemesia abyysinica against a Trypanosoma congolense isolate. BMC Complementary and Alternative Medicine, 14:117.

Ghaisas, M. M., Navghare, V. V., Takawale, A. R., Zope, V. S. and Deshpande, A. D. (2008). In-vitro antioxidant activity of tectona grandis linn. Pharmacologyonline, 3: 296-305.

Giordani, F., Morrison, L. J., Rowan, T. G., de Koning, H. P. and Barrett, M. P. (2016). The animal trypanosomiasis and their chemotherapy: a review. Parasitology, 143(14): 1862–1889. https://doi.org/10.1017/S0031182016001268

Gulcin, I., Kufrevioglu, O.I., Oktay, M. and Buyukokuroglu, M.E. (2004). Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). Journal of Ethnopharmacology, 90: 205–215.

Herbert, W. J. Lumsden W. H (1976). Trypanosoma brucei: A Rapid “Matching” method for Estimating the host parasitemia. Experimental Parasitology, 40:427-431.

Ibrahim, M. N., Sunusi, U. K., Muhammad, J. and Sadiq, I. Z (2020). Antitrypanosomal potential of methanolic extract of Detarium microcarpum Leaves in Trypanosoma congolense infected rats. Nigerian Journal of Scientific Research, 19 (3): 189-194.

Jia Zhishen., Tang Mengcheng and Wu Jianming (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(1999): 555-559

Liyana-Pathiranan, C.M. and Shahidi, F. (2005). Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L) as affected by gastric pH conditions. Journal of Agricultural Food Chemistry, 53: 2433-2440.

Mamoudou A, N. A. (2016). Animal Trypanosomiasis in clinically healthy cattle of north cameroon: epidemiological implications. Parasites and Vectors, 9(1): 1-8.

Mulenga, G. M., Henning, L., Chilongo, K., Mubamba, C., Namangala, B. and Gummow, B. (2020). Insights into the control and management of human and bovine african trypanosomiasis in zambia between 2009 and 2019-a review. Tropical Medicine and Infectious Disease, 5(3),115. https://doi.org/10.3390/tropicalmed5030115

Peter, S., Nandal, P. N., Prakash, S. O., Rao, J. and Kumar, S. R. (2012). In vitro antitrypanosomal evaluation of Picrorhiza kurroa rhizomes. Journal of Pharmacology, 3:205–208

Sani, A., Agunu, A., Danmalam, H. U. and Ibrahim, H. (2014). Pharmacognostic studies of the stem bark of Detarium microcarpum. Guill and Perr. (Fabaceae). Natural Products Chemistry and Research, 4: 2-8.

Sani, A., Zakariyya, U. A., Mahe, A., Singh, D., Jain, M. and Hassan, F. (2018). In vitro antitrypanosomal activity of Breonadia salicina on Trypanasoma brucei brucei. International Journal of Pharma Sciences and Research, 9(8): 103-107.

Sepulveda-Boza, S. and Cassels, B. K. (1996). Plant metabolites active against Trypanosoma cruzi. Planta Medica, 62, 98-105

Simarro, P. P., Cecchi, G., Franco, J. R., Paone, M., Diarra, A., Ruiz-Postigo, J. A., Fèvre, E. M., Mattioli, R. C. and Jannin, J. G. (2012). Estimating and mapping the population at risk of sleeping sickness. PLoS Neglected Tropical Diseases, 6(10). https://doi.org/10.1371/journal.pntd.0001859

Simarro, P. P., Franco, J., Diarra, A., Postigo, J. R. and Jannin, J. (2012). Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology, 139(7): 842-846.

Takeet, M. I. (2013). Molecular survey of pathogenic trypanosomes in naturally infected Nigerian cattle. Research in Veterinary Science, 94: 555-561.

Tewabe, Y., Bisrat, D., Terefe, G. and Asres, K. (2014). Antitrypanosomal activity of Aloin

and its derivatives against Trypanosoma congolense field isolate. BMC Veterinary Research, 10(61):1–7. 10.1186/1746-6148-10-61

Trease, G. E. and Evans, W. C. (2002). Pharmacognosy, 15th ed. Saunders. St. Louis, MO. pp. 214–393.

Umamaheswari, M., Asokkumar, K., Sudalaivelmurugiah, M., Sivashanmugam, A.T. and Subhadradevi, V. (2009) Hypouricaemic and antioxidant activities of the fractions of Vitex negudo L. leaf extract. Phytopharmacology and Therapeutic Values 23, 5970.

Umar, I. A., Ndidi, U. S., Abdullahi, A. S., Ohilebo, A. and Oluwafunminiyi, E. T. (2018). In vitro antitrypanosomal and antioxidant activities of methanol extracts of selected Nigerian plants. Journal of Herbs, Spices and Medicinal Plants, 24(1): 52-63.

Umar, I.A., Ndidi, U. S., Mohammed, A., Anaedum, V. C. and Zambuk, U. U. (2014). In vitro antitrypanosomal activity, antioxidant property and phytochemical constituents of aqueous extracts of nine Nigerian medicinal plants. Asian Pacific Journal of Tropical Disease, 4(5):348– 355.

Umeakuana, P. U., Gibson, W., Ezeokonkwo, R. C. and Anene, B. M. (2019). Identification of Trypanosoma brucei gambiense in naturally infected dogs in Nigeria. Parasites and Vectors, 12(1): 1–7. https://doi.org/10.1186/s13071-019-3680-8

Published

2022-10-05

How to Cite

Emohchonne, J. U. ., Ndidi, U. S. ., Kashim, A. S. ., Sofiyullahi, I. ., Binta, S. ., Abdulmalik, I. ., Kagbu, A. J. ., & Jamila, A. . (2022). Phytochemical Composition, Antioxidant and Antitrypanosomal Properties of Leaves and Stem Bark Extract of Detarium microcarpum: An in vitro study. Nigerian Journal of Biochemistry and Molecular Biology, 37(3), 158–165. https://doi.org/10.2659/njbmb.2022.24

Issue

Section

Research Articles