Bioactivity-Guided Fractionation of Antimalarial Active Extract of Spondias mombin Linn Stem bark


  • Kissinger O. Orumwensodia Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria. Author
  • Patrick O. Uadia Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria. Author


Herbs have proven to be viable therapeutic alternatives for treatment of diseases like malaria. This study explores the phytochemical, nutritional, antioxidant and antimalarial potentials of Spondias mombin Linn. stem bark. Hexane, methanol, ethanol and aqueous extracts were separately obtained from dried pulverized stem bark, while the most active extracts were fractionated by column chromatography. Extracts/fractions were screened for phytochemical, nutritional and antioxidant properties using established protocols, while antimalarial activity was against Plasmodium berghei NK65 in mice using the chemo-suppressive, prophylactic, curative and mean survival time (MST) tests. Phenolics, flavonoids and tannins were detected in all the extracts. Percentage nutritional composition of the plant material showed it contained moisture (5.14±0.01%), crude fibre (1.00±0.01%), nitrogen free extract (66.18 ± 0.42%), crude protein (7.42±0.10%), crude fat (18.24±1.01%) and crude ash (2.03±0.01%). The extracts scavenged ferrous and DPPH radicals with methanol extract having the highest antioxidant activity. Extracts reduced parasitaemia and prolonged MST relative to infected untreated group. Aqueous and ethanol extracts were the most active in the chemo-suppressive (81.63%: MST 20.00±2.21 days) and prophylactic (87.48%: MST 18.20±2.48 days) tests respectively. The hydro-ethanol extract was partitioned into hexane, hexane:ethylacetate-HE, ethylacetate-EA, ethylacetate:methanol-EM and methanol residue-MR fractions. The fractions had varying antimalarial activity with some almost doubling MST relative to infected untreated group. The highest activity was in EA administered group with chemo-suppression 78.32%, MST: 17.80±1.12 days; prophylaxis 66.51%, MST: 15.00±0.31 days; curative 76.70%, MST: 16.80±0.48 days. Therefore, Spondias mombin stem bark has rich phyto-nutritional constituents possibly linked to its antimalarial activity.


Download data is not yet available.


Abdulkadir, S.S., Jatau, A.I., Abdussalam, U.S. Bichi, L. A., Abubakar, B. and Malami, S. (2022). In vivo antiplasmodial activity of the methanol leaf extract of Piliostigma reticulatum (Dc.) Hochst (Fabaceae). Bulletin of the National Research Centre, 46(1), 223.

Abdussalam, U. S., Aliyu, M. and Maje, I. M. (2018). In vitro anti-plasmodial activity of ethanol leaf extract of Marruium vulgare L. (Lamiaceae) in Plasmodium berghei berghei infected mice. Tropical Journal of Pharmaceutical Research, 2(3): 132-135.

Abo, K. A., Ogunleye, V. O. and Ashidi, J. S. (1999). Antimicrobial potential of Spondias mombin, Croton zambesicus and Zygotritonia crocea. Phytotherapy Research, 13(6): 494 – 497.

Ademola, I. O., Fagbemi, B. O. and Idowu, S. O. (2005). Anthelmintic activity of extract of Spondias mombin against gastrointestinal nematodes of sheep; studies in vitro and in vivo. Tropical Animal Health and Production, 37 (3): 223 – 235.

African Pharmacopoeia (1986). Vol. 2 (1st ed). OAU/STRC publications. Pp 128-144.

Agidew, E., Reneela, P. and Deyou, T. (2013). Phytochemical investigation of Sapium ellipticum. Journal of Natural Products and Plant Resources, 3(5): 1 – 6.

Aigbokhan, E. I. (2014). Annotated checklist of vascular plants of southern Nigeria, a quick reference guide to the vascular plants of southern Nigeria: a systematic approach. Uniben Press, Benin. Pp 289.

Alvarez, M. A. (2014). Plant secondary metabolism. In: Plant biotechnology for health. Springer, Cham. Pp 15-31.

AOAC (2000). Official Methods of Analysis of the Association of the Official Analytical Chemists, AOAC International, (17th ed). Washington DC, USA.

Atamna, H. and Ginsburg, H. (1993). Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Molecular and Biochemical Parasitology. 61(2): 231–234

Ayoka, A. O., Akomolafe, R. O., Akinsomisoye, O. S. and Ukponmwan, O. E. (2008). Medicinal and economic value of Spondias mombin. African Journal of Biomedical Research. 11(2): 129 – 136.

Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technology, 28(1): 25-30.

Cannell, R. J. P. (2006). Natural products isolation. In: Sarker, SD; Latif, Z; Gray, AI (eds). Methods in biotechnology. (2nd ed). New Jersey: Humana Press Inc.pp1-25

Caraballo, A., Caraballo, B. and Rodriguez-Acosta, A. (2004). Preliminary assessment of medicinal plants used as antimalarials in the South-Eastern Venezuelan Amazon. Revista-da-Sociedade-Brasileira-deMedicina-Tropical, 37 (2): 186 – 188.

Coates, N. J., Gilpin, M. L., Gwynn, M. N., Lewis, D. E., Milner, P. H., Spear, S. R. and Tyler J. W. (1994). SB-202742 a novel beta-lactamase inhibitor isolated from Spondias mombin. Journal of Natural Products, 57(5), 654 – 657.

Corthout, J., Pieters, L. A., Claeys, M., Vanden-Berghe, D. A. and Viletinck, A. J. (1992). Antiviral caffeoyl; esters from Spondias mombin. Phytochemistry, 31(6): 1979-1981.

Corthout, J., Pieters, L. A., Claeys, M., Vanden-Berghe, D. A. and Viletinck, A. J. (1994). Antibacterial and molluscicidal phenolic acid from Spondias mombin Planta Medica, 60(5): 460 – 463.

Dinis, T., Madeira, V. and Almeida, L. (1994). Action of phenolics derivatives (acetominophan, salicylate and 5-amino salicylate) as inhibitors of membrane lipid peroxidation or as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 135(1): 161-169.

Etame, R. E., Mouokeu, R. E., Pouaha, C. L. C., Kenfack, I. V., Tchientcheu, R., Assam, J. P. A., Poundeu, F. S. M., Tiabou, A. T., Etoa, F. X., Kuiate, J. R., Ngane, R. A. N. (2018). Effect of fractioning on antibacterial activity of Enantia chlorantha Oliver (Annonaceae) methanol extract and mode of action. Evidence-based Complementary and Alternative Medicine, 2018: 1-13.

Evans, W. C. (2002). Trease and Evans Pharmacognosy (15th ed), Churchill Livingstone Port Harcourt Publishers Limited, London. Pp 204-393.

Fabricant, D. S. and Farnsworth, N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspective, 109(1): 69–75.

Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R. and Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews Drug Discovery, 3(6): 509–520.

Guha, M., Kumar, S., Choubey, V., Maity, P. and Bandyopadhyay, U. (2006). Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. Journal of the Federation of American Societies for Experimental Biology, 20(8): 439–449.

Gyamfi, M. A., Yonamine, M. and Aniya, Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. General Pharmacology, 32(6): 661-667.

Harborne, J. B. (1998). Phenolic compounds. In Harborne, J. B. (ed), Phytochemical methods: a guide to modern techniques of plant analysis, London: Chapman and Hall. Pp 40–106.

Inbaneson, S. J., Ravikumar, S., Suganthi, P. (2012). In vitro anti-plasmodial effect of ethanolic extract of coastal medicinal plants along palk strait against Plasmodium falciparum. Asian Pacific Journal of Tropical Biomedicine, 2(5): 364-367.

Institute for Laboratory Animal Research (ILAR) (2011). Guide for the care and use of laboratory animals. 8th ed. National Academic Press, Washington DC.

Kalra, B. S., Chawla, S., Gupta, P. and Valecha, N. (2006). Screening of antimalarial drugs: an overview. Indian Journal of Pharmacology, 38(1): 5–12.

Li-Weber, M. (2009). New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treatment Review, 35(1): 57–68.

Mulisa E, Girma B, Tesema S, Yohannes M, Zemene E, Amelo W (2018) Evaluation of in vivo antimalarial activities of leaves of Moringa oleifera against Plasmodium berghei in mice. Jundishapur Journal of Natural Pharmaceutical Products,13(1):e60426.

Muluye, A. B, Melese, E. and Adinew, G. M. (2015). Antimalarial activity of 80 % methanolic extract of Brassica nigra (L.) Koch. (Brassicaceae) seeds against Plasmodium berghei infection in mice. BMC Complementary and Alternative Medicine, 15(1): 367.

Nelson, D. L. and Cox, M. M. (2017). Lehninger principles of biochemistry (7th ed). Freeman, WH (ed). New York. Pp 612-703

Newman, D. J. and Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3): 770–803.

Ochs, R. S. (2014). Metabolism and energy. In: Biochemistry. Jones and Bartlett, Burlington, USA. Pp 269-307.

Okokon, J. E., Augustine, N. B. and Mohanakrishnan, D. (2017). Antimalarial, antiplasmodial and analgesic activities of root of Alchornea laxiflora. Pharmaceutical Biology, 55(1):1022-1031.

Orumwensodia, K. O., Uadia, P. O. and Choudhary M. I. (2021). Phytotoxicity, cytotoxicity and chemical composition of Spondias mombin Linn. stem bark. Clinical Phytoscience, 7(1): 1-9.

Orumwensodia, K. O. and Uadia, P. O. (2022). In vivo antimalarial activity of Morinda lucida Benth. stem bark in Plasmodium berghei-infected mice. Nigerian Journal of Biochemistry and Molecular Biology, 37(3): 194-200.

Orumwensodia, K. O. and Uadia, P. O. (2023). Antimalarial activity of extracts and partially purified fractions of Alstonia boonei De Wild. African Scientist, 24(2): 305-317.

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S. (2009). Spondias mombin Linn., agroforestree database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya.

Padmavathi, M. (2013). Drug delivery system in nano greens. International Journal of Herbal Medicine, 1(3): 56 – 60.

Percário, S., Moreira, D. R., Gomes, B. A. Q., Ferreira, M. E. S., Gonçalves, A. C. M., Laurindo, P. S. O. C., Vilhena, T. C., Dolabela, M. F. and Green, M. D. (2012). Oxidative stress in malaria. International Journal of Molecular Sciences, 13(12): 16346-16372.

Raes, K., Doolaege, E. H., Deman, S., Vossen, E. and De Smet, S. (2015). Effect of carnosic acid, quercetin and α-tocopherol on lipid and protein oxidation in an in vitro simulated gastric digestion model. International Journal of Food Science and Nutrition, 66(2): 216-221.

Ryley, J. F. and Peters, W. (1970). The antimalarial activity of some quinoline esters. American Journal of Tropical Medicine and Parasitology, 84(2): 209-222.

Sofowora, A. (1982). Screening plants for bioactive agents in medicinal plants and traditional medicine in Africa, Spectrum Books Ltd., Ibadan. Pp 128 - 161.

Stahl, B. (1973). Drug analysis by chromatography and microscopy. a practical supplement to pharmacopoeias. VI ed. Ann Arbor, Michigan. Pp 219 - 224.

World Health Organization- WHO (2019). Global report on traditional and complementary medicine. Geneva: World Health Organization, 2019.

World Health Organization - WHO. (2023). World malaria key facts 2022. Geneva: World Health Organization, 2023.

Yu, M., Gouvinhas, I., Rocha, J. and Barros, A. I. R. N. A. (2021). Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Science Report, 11(1):10041.

Yuan, H., Ma, Q., Ye, L. and Piao, G. (2016). The Traditional Medicine and Modern Medicine from Natural Products. Molecules, 21(5):559.



How to Cite

Bioactivity-Guided Fractionation of Antimalarial Active Extract of Spondias mombin Linn Stem bark. (2023). Nigerian Journal of Biochemistry and Molecular Biology, 38(3), 112-122.