Cellgevity® supplement stalls diabetic renal dysfunction in male rats

Authors

Abstract

Chronic excessive ROS formation instigates oxidative stress, inflammation and the inhibition of vital physiological processes, including renal Na+/K+-ATPase activity, thereby facilitating the progression of diabetic kidney damage. This study investigated the therapeutic impact of Cellgevity® (a poly-antioxidant supplement) against streptotozin-induced diabetic kidney dysfunction in male rats. Twenty-eight matured male rats randomised into – Control group, Diabetes-Untreated, Diabetes-Treated 1 and Diabetes-Treated 2 groups. Daily oral treatment of the Diabetes-Treated groups with therapeutic doses of Cellgevity® suspension in distilled water (25 mg/kg and 40 mg/kg BW respectively) was conducted for 30 days, while the control and Diabetic-Untreated groups received distilled water (placebo). Results show that Cellgevity® reduced kidney lipid peroxidation, prevented kidney enlargement and renal TNF-α and nitrite accumulation, and increased renal Na+/K+-ATPase activity compared to the untreated diabetic group. The Cellgevity® treatment also increased the actions of renal glutathione peroxidase, superoxide dismutase, and catalase by at least 70% compared to the untreated diabetic group. The serum levels of creatinine, blood urea nitrogen, HCO3, Na+ and K+ of the treated diabetic groups were also significantly normalised to the levels of the control group. The results demonstrate the anti-oxidative-nitrosative and anti-inflammation impact of Cellgevity® against diabetic renal dysfunction. The result presents a good incentive for anti-oxidant supplements in the management of diabetes and its complications.

Downloads

Download data is not yet available.

References

Aderemi, A. S., Dare, O. O. and Akomaye, A. J. (2017). Modulating role of D-ribose-L-cysteine on oxidative stress in streptozotocin induced diabetes on plasma lipoprotein, oxidative status, spermatogenesis and steroidogenesis in male Wistar rats. Current Research in Diabetes & Obesity Journal, 9(2): 1–7.

Amponsah, S. K. N'Guessan, B.B., Akandawen, M., Aning, A., Agboli, S. Y., Danso, E.A., Opuni, K F.M., Asiedu-Gyekye, I. J. and Appiah-Opong, R., (2020). Effect of Cellgevity® supplement on selected rat liver cytochrome P450 enzyme activity and pharmacokinetic parameters of carbamazepine. Evidence-based Complementary and Alternative Medicine, 2020: 1-8.

Awodele, O. Badru, W. A., Busari, A. A., Kale, O. E., Ajayi, T. B., Udeh, R. O. and Emeka, P.M. (2018). Toxicological evaluation of therapeutic and supra-therapeutic doses of Cellgevity® on reproductive function and biochemical indices in Wistar rats. BMC Pharmacology and Toxicology, 19(1): 68-73.

Bohlender, J. M. Franke, S., Stein, G. and Wolf, G. (2005). Advanced glycation end products and the kidney. American Journal of Physiology-Renal Physiology, 289(4): F645–F659.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254.

Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865): 813-20.

Coughlan, M. T., Coughlan, M. T. and Cooper, M. E. (2009). RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes. Journal of the American Society of Nephrology, 20(4): 742–752.

Djemli-Shipkolye, A., Coste, T., Raccah, D., Vague, P., Pieroni, G. and Gerbi, A., (2001). Na+/K+-ATPase alterations in diabetic rats: relationship with lipid metabolism and nerve physiological parameters. Cellular and Molecular Biology.7(2): 297–304.

Dufayet De La Tour, D. Vague, P., Coste, T., Moriscot, C., Jannot, M. F. and Raccah, D. (1998). Erythrocyte Na/K ATPase activity and diabetes: relationship with C-peptide level. Diabetologia. 41(9): 1080–1084.

Ebaid, H., Bashandy, S., Abdel-Mageed, A. M., Al-Tamimi, J., Hassan, I. and Alhazza, I. M. (2020). Folic acid and melatonin mitigate diabetic nephropathy in rats via inhibition of oxidative stress. Nutrition and Metabolism, 17, 6. https://doi.org/10.1186/s12986-019-0419-7

Febiyanto, N. Yamazaki, C., Kameo, S., Sari, D. K., Puspitasari, I.M., Sunjaya, D. K., Herawati, D M. D., Nugraha, G. I., Fukuda, T. and Koyama, H. (2017). Effects of selenium supplementation on the diabetic condition depend on the baseline selenium status in KKAy Mice. Biological Trace Element Research, 181(1): 71–81.

Forbes, J. M., Coughlan, M. T. and Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57(6): 1446–1454.

Fujita, H., Fujishima, H., Chida, S., Takahashi, K., Qi, Z., Kanetsuna, Y., Breyer, M.D., Harris, R.C., Yamada, Y. and Takahashi, T. (2009). Reduction of renal superoxide dismutase in progressive diabetic nephropathy. Journal of the American Society of Nephrology, 20(6): 1303–1313.

Galle, J. (2001). Oxidative stress in chronic renal failure. Nephrology Dialysis Transplantation, 16(11): 2135–2137.

Golbidi, S., Badran, M. and Laher, I. (2011). Diabetes and alpha lipoic acid. Frontiers in Pharmacology, 2: 1-15

Guide for the Care and Use of Laboratory Animals (1996). Guide for the Care and Use of Laboratory Animals. National Academies Press. https://doi.org/10.17226/5140

Ha, H. and Lee, H. B. (2001). Oxidative stress in diabetic nephropathy: basic and clinical information. Current Diabetes Reports, 1(3): 282–287.

Hadwan, M. H. (2018). Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochemistry, 19(1),7. https://doi.org/10.1186/s12858-018-0097-5

Faselis, C., Katsimardou, A., Imprialos, K., Deligkaris, P., Kallistratos, M. and Dimitriadis, K. (2020). Microvascular complications of type 2 diabetes mellitus. Current Vascular Pharmacology, 18(2), 117–124. https://doi.org/10.2174/1570161117666190502103733

Iannello, S., Milazzo, P. and Belfiore, F. (2007). Animal and human tissue Na+/K+-ATPase in obesity and diabetes: A new proposed enzyme regulation. American Journal of the Medical Sciences, 333(1): 1–9.

Ismail-Beigi, F. and Edelman, I. S. (1971). The mechanism of the calorigenic action of thyroid hormone: Stimulation of Na+ + K+-activated adenosinetriphosphatase activity. Journal of General Physiology, 57(6): 710–722.

Iwalokun, B. A. and Iwalokun, S. O. (2007). Association between erythrocyte Na+K+-ATPase activity and some blood lipids in type 1 diabetic patients from Lagos, Nigeria. BMC Endocrine Disorders, 7(1): 1–8.

Kaplan, J. (2002). Biochemistry of Na,K-ATPase. Annual Review of Biochemistry, 71: 511–535.

Kashihara, N., Haruna, Y.K., Kondeti, V.S. and Kanwar, Y. (2010). Oxidative stress in diabetic nephropathy. Current Medicinal Chemistry, 17(34): 4256–4269.

Kataya, H. H., Hamza, A.A., Ramadan, G.A., Khasawneh, M. A., (2011). Effect of licorice extract on the complications of diabetes nephropathy in rats. Drug and Chemical Toxicology, 34(2): 101–108.

Koc, B., Erten, V., Yilmaz, M. I., Sonmez, A. and Kocar, I. H., (2003). The relationship between red blood cell Na/K-ATPase activities and diabetic complications in patients with type 2 diabetes mellitus. Endocrine. 21(3): 273–278.

Konrad, R. J., Mikolaenko, I., Tolar, J. F., Liu, K. and Kudlow, J. E., (2001). The potential mechanism of the diabetooenic action of streptozotocin: Inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochemical Journal, 356(1): 31–41.

Kuhad, A. and Chopra, K. (2007). Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. European Journal of Pharmacology, 576(1–3): 34–42.

Kuhad, A. and Chopra, K. (2008). Effect of sesamol on diabetes-associated cognitive decline in rats. Experimental Brain Research. 185(3): 411–420.

Lash, L. H. (2015). Mitochondrial glutathione in diabetic nephropathy. Journal of Clinical Medicine, 4(7): 14-28.

Lee, M., Cho, S., Roh, K., Chae, J.Park, J. H., Park, J., Lee, M. A., Kim, J., Auh, C. K., Yeom, C.H. and Lee, S., (2017) Glutathione alleviated peripheral neuropathy in oxaliplatin-treated mice by removing aluminum from dorsal root ganglia. American Journal of Translational Research, 9(3): 926–939.

Lim, A. K. and Tesch, G. H. (2012). Inflammation in diabetic nephropathy. Mediators of inflammation, 2012, 146154. https://doi.org/10.1155/2012/146154

Lutchmansingh, F. K., Hsu, J. W., Bennett, F. I., Badaloo, A. V., McFarlane-Anderson, N., Gordon-Strachan, G. M., Wright-Pascoe, R. A., Jahoor, F. and Boyne, M. S. (2018). Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PloS one, 13(6) e0198626.

Mason, S. A., Keske, M. A. and Wadley, G. D. (2021). Effects of vitamin C supplementation on glycemic control and cardiovascular risk factors in people with type 2 diabetes: A GRADE-Assessed systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 44(2): 618–630.

Misra, H. P. and Fridovich, I. (1972) ‘The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10): 3170–3175.

Navarro, J. F. and Mora, C. (2005) Role of inflammation in diabetic complications. Nephrology Dialysis Transplantation. 20(12): 2601–2604,

Ogunlabi, O. O., Adegbesan, B. O., Ezima E.N., Adebisi, A, A. (2021). Cellgevity® attenuates liver distruption, oxidative stress and inflammation in STZ-diabetic male rats. Scientific African, 14: https://doi.org/10.1016/j.sciaf.2021.e0105

Ohkawa, H., Ohishi, N. and Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351–358.

Palsamy, P. and Subramanian, S. (2011). Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1812(7): 719–731.

Rotruck, J. T. Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., Hoekstra, W. G., (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073): 588–590.

Santuré, M., Pitre, M., Marette, A., Deshaies, Y., Lemieux, C., Larivière, R., Nadeau, A., Bachelard, H. (2002) ‘Induction of insulin resistance by high-sucrose feeding does not raise mean arterial blood pressure but impairs haemodynamic responses to insulin in rats’, British Journal of Pharmacology. 137(2): 185–196.

Sekhar, R. V. (2011). Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care, 34(1): 162–167.

Singh, D. K., Winocour, P. and Farrington, K. (2011). Oxidative stress in early diabetic nephropathy: Fueling the fire. Nature Reviews Endocrinology, 7(3): 176-84.

Szkudelski, T. and Szkudelska, K. (2011) ‘Anti-diabetic effects of resveratrol’, Annals of the New York Academy of Sciences. 1215(1): 34–39.

Tiwari, B. K., Pandey, K. B., Abidi, A. B. and Rizvi, S. I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers, 2013, 378790: 1-8.

Ueno, Y., Kizaki, M., Nakagiri, R., Kamiya, T., Sumi, H., Osawa, T., (2002). Dietary glutathione protects rats from diabetic nephropathy and neuropathy. Journal of Nutrition, 132(5): 897–900.

Vague, P., Coste, T. C., Jannot, M. F., Raccah, D. and Tsimaratos, M. (2004). C-peptide, Na+,K+-ATPase, and diabetes. Experimental Diabesity Research, 5: 37–50.

Yang, D. K. and Kang, H.-S. (2018). Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomolecules & Therapeutics, 26(2): 130-138.

Zadhoush, F., Sadeghi, M. and Pourfarzam, M. (2015). Biochemical changes in blood of type 2 diabetes with and without metabolic syndrome and their association with metabolic syndrome components. Journal of Research in Medical Sciences, 20(8): 763–770.

Published

2022-03-01

How to Cite

Ogunlabi, O., Adegbesan, B., Ezima, E., & Adebisi, A. (2022). Cellgevity® supplement stalls diabetic renal dysfunction in male rats. Nigerian Journal of Biochemistry and Molecular Biology, 37(1), 17–25. Retrieved from https://www.nsbmb.org.ng/journals/index.php/njbmb/article/view/41

Issue

Section

Research Articles