Heavy Metals Bioavailability and Phyto-accumulation Potentials of Selected Plants on Burrow-pit Dumpsites in Aba and Ntigha Dumpsite in Isiala Ngwa of Abia State, Nigeria

Authors

  • Obasi, N. A. Department of Biochemistry, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria Author
  • Akubugwo, E. I. Department of Biochemistry, Abia State University, Uturu-Nigeria Author
  • Ugbogu, O. C. Department of Environmental Microbiology, Abia State University, Uturu-Nigeria Author
  • Chinyere, G. C. Department of Biochemistry, Abia State University, Uturu-Nigeria Author

Abstract

In this study, dumpsite soil physicochemical parameters, eight heavy metals speciation and soil-plant transfer of five plants species were investigated. The soil and plants parts (roots, stem and leaves) obtained from burrow-pit dumpsite in Aba and Ntigha dumpsite in Isiala Ngwa as well as a nearby farm land (control site) were subjected to standard methods of chemical analysis. Results obtained showed that mean pH, electrical conductivity, moisture, cation exchange capacity, total organic carbon, total organic matter, phosphate, sulphate, carbon:nitrogen ratio and total extractable metal for Cd, Cu, Mn, Pb, Zn, Fe, Ni, and Cr were significantly higher (P < 0.05) in the dumpsites compared to control site. Sequential extraction showed higher percentages of the non-residual fraction for all the metals studied except Cu. The order of mobility and bioavailability of these metals were: Cd > Fe > Pb > Mn > Zn > Cr > Ni > Cu. Total mean concentration of metals in different parts of Amaranthus hybridus, Talinum triangulare, Carica papaya, Ipomea batatas and Luffa aegyptica were significantly higher (P < 0.05) in the dumpsites compared to control site. The translocation factor, biological concentration factor and biological accumulation coefficient values of the plant species varied for all the metals. These results imply that pollution of an environment by dumpsites has health and ecological risks and that the plants studied could be used for environmental friendly phytoremediation technologies.

Downloads

Download data is not yet available.

References

Abul, S. (2010). Environmental and health impact of solid waste disposal at Mangwaneni dumpsite in Manzini: Swaziland. Journal of Sustainable Development in Africa 12(7): 64-73.

Alvarez, E. A., Mochon, M. C., Sanchez, J. C. J. and Rodriguez, M. T. (2002). Heavy metal extractable forms in sludge from waste-water treatment plants. Chemosphere 47: 765-775.

Amusan, A. A., Ige, D. V. and Olawale, R. (2005). Characteristics of soils and crops uptake of metals

in municipal waste dumpsites in Nigeria. Journal of Human Ecology 17:167-171.

Annenkov, B. N. (1982). Mineral feeding of pigs. In: Mineral nutrition of animals. (Georgierskii, V. I., Annenkov, B. N. and Samokhin, V. I. (eds). pp. 355-389. Butterworths, London.

APHA (1998). Standard methods of examination of water and waste water. American Public Health Association. Washington, D.C., USA. pp. 138-142.

Archer, M. J. G. and Caldwell, R. A. (2004). Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water, Air and Soil Pollution 157: 257-267.

Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Villa, F. J. and Ball A. S (2005). Soil health: A new challenge for microbiologists and chemists. International Microbiology 8: 13-21.

Assuncao, A. G. L., Schat, H. and Aarts, M. G. M. (2003). Thlaspi caerulescens, an attractive model species to study heavy metal hyper-accumulation in plants. New Phytol 159:351-360.

Ayari, F., Hamdi, H., Jedidi, N., Gharbi, N. and Kossai, R. (2010). Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. International Journal Environment, Science and Technology 7(3):465-472.

Bates, R. G. (1954). Electromeric pH determination. John Willey and Sons Inc., New York. pp. 87-92.

Baker, A. J. M. and Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulative metals. CAB International, New York. pp. 201-228.

Baker, A. J. M., McGrawth, S. P., Reeves, D. R. and Smith, J. A. C. (2000). Metal hyper-accumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Phytoremediation of polluted soils and water. (Terry, N. and Banuelos, G. (eds). pp 171-188.CRC Press, Boca Raton, Fl, USA.

Benjamin, M. and Mwashot, M. (2003). Levels of caesium and lead in water, sediment and selected fish species in Mombasa Kenya Western Indian. Oceanic Journal of Marine Science 2: 25-34.

Benson, N. U. and Ebong, G. A. (2005). Heavy metals in vegetables commonly grown in a tropical garden ultisol. Journal of Sustainable Tropical Agricultural Resources 16:77-80.

Butters, B. and Chenery, E. M. (1959). Determination of sulphate in soil, plant materials and water by the turbidimetric method. Analyst London 84:239-242.

Cataldo, D. A .and Wildung, R. E. (1978). Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives 27:149-159.

CCME (1991). Interim Canadian environment quality criteria for contaminated sites. Report CCME EPC-CS3.

Chehregani, A., and Malayeri, B. (2007). Removal of heavy metals by native accumulator plants. International Journal of Agriculture and Biology 9(3):462-465.

Chunilall, V., Kindness, A. and Johnalagada, S. B. (2005). Heavy metal uptake by two edible Amaranthus herbs grown on soils contaminated with lead, mercury, cadmium, and nickel. Journal of Environmental Science and Health 40:375-385.

Cobb, G. P., Sands, K., Waters, M., Wixson, B. G. and Dorward-King, E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environmental Toxicological Chemistry 19:600-607.

Cui, S., Zhou, Q. and Chao, L. (2007). Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old semetery, northeast, China. Environmental Geology 51: 1043 -1045.

Del-Rio-Celestino, M. D., Font, R., Moreno-Rojas, R. and De-Haro-Bailon, A. (2006). Uptake of lead and zinc by wild plants growing on contaminated soils. Industrial Crops and Products 24:230-237.

Dewis, J. and Freitas, F. (1970). Physical and chemical methods of soil and water analysis. Soil Bulletin 10, FAO, Rome, Pp 1-275.

Dupler, D. (2001). Heavy metal poisoning. Gale Encyclopedia of Alternative Medicine, Farmington Hills. Pp 23-26.

Ebong, G. A., Akpan, M. M., and Mkpenie, V. N. (2008). Heavy metal contents of municipal and rural dumpsite soils and rate of accumulation by Carica papaya and Talinum triangulare in Uyo, Nigeria. E-Journal of Chemistry 5(2): 281-290.

Ebong, G. A., Etuk, H. S. and Johnson, A. S. (2007). Heavy metals accumulation by Talinum triangulare grown on waste dumpsites in Uyo metropolis, Akwa Ibom State, Nigeria. Journal of Applied Sciences 7(10): 1404-1409.

Elaigwu, S. E., Ajibola, V. O. and Folaranmi, F. M. (2007). Studies on the impact of municipal waste dumps on surrounding soil and air quality of two cities in northern Nigeria. Journal of Applied Sciences 7(3): 421-425.

Ellis, D. R and Salt, D. E. (2003). Plants, selenium and human health. Current Opinion Plant Biology 6:273-279.

Enwezor, W. O., Ohiri, A. C., Opubaribo, E. E., and Udoh, E. J. (1988) A review of soil fertility investigators in south eastern Nigeria. HFDA, Lagos – Nigeria. pp. 1-136.

Ewa-Szarek, G., Amrowiez, A. and Gwazda, R. (2006). Trace elements concentration in fish and bottom sediments of autotrophic dam reservoir. Int.ernational Journal of Hydrology 35: 331-352.

Ferner, D. J (2001). Toxicity of heavy metals. Medical Journal 2:1-4.

Greenly, D. J. and Hayes, M. H. (2000). The chemistry of soil processes. A Wiley Inter Science Publication, New York. pp 201-213.

Ghosh, M. and Singh, S. P. (2005). A review of phytoremediation of heavy metals and utilization of it’s by-products. Applied Ecology and Environmental Research 3(1):1-18.

Gupta, A. K. and Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) Var. T55 grown on soil amended with tannery sludge: selection of single extractants. Chemosphere 64: 161-173.

Gupta, S. K. and Chen, K. Y. (1975). Partitioning of trace metals in selective chemical fractions of near shore sediments. Environmental Letters 10: 129-158.

Hall, J. L. (2002). Cellular Mechanisms for heavy Metals detoxification and tolerance. Journal of Experimental Botany 53(366):1-11.

Harrison, R. M. and Chirgawi, M. B. (1989). The assessment of air and soil as contributors of some trace metals to vegetable plants: 1. use of filtered air growth cabinet. Science and Total Environment 83:13-34.

Hickey, M. G. and Kittrick, J. A. (1984). Chemical partitioning of Cd, Cu, Ni and Zn in soils and sediments containing high levels of heavy metals. Journal of Environmental Quality 13:372-376.

Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W. and Stingeder, G. J. (2004). Determination of trace elements bound to soils and sediment fractions. Pure and Applied Chemistry. 76: 415-442.

Ikem, A., Egiebog, N. O. and Nyavor, K. (2003). Trace Elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water, Air Soil Pollution. 149:51-75.

Ikhouria, E. U., Urunmatsoma, S. O. P. and Okieimen, F. E. (2010). Preliminary investigation of chemical fraction and heavy metal accumulation in plant maize (Zea mays) grown on chromated copper arsenate (CCA) contaminated soil amended with poultry droppings. African Journal of Biotechnology 9(18): 2675- 2682.

Iwegbue, C. M. A., Emuh., F. N., Isirimah, N. O., and Egun, A. C. (2007). Fractionation, characterization and speciation of heavy metals in composts and compost- amended soils. African Journal of Biotechnology 6(2): 67-78.

Jarup, L. (2003). Hazards of heavy metals contamination. British Medical Bulletin 68:167-182.

Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements: an environment issue. Geoderma 122: 143-149.

Kabata-Pendias, A. and Pendias, H. (2001). Trace elements in soils and plants (3rd edn). CRC Press, Boca Raton, Florida. pp.365-478.

Karaca, A. (2004). Effect of organic wastes on the extractability of cadmium, copper, nickel and zinc in Soil. Geoderma 122: 297- 303.

Kerr, A. W., Hall, H. K. and Kozub, S. A. (2002). Doing Statistics with SPSS. SAGE Publications Ltd, London. Pp 163-174.

Khan, S., Cao, Q. Y. Z., Huang, Y. Z. and Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China. Environment Pollution 125(3):686-692.

Khan, S., Farooq, R. and Shahbaz, S. (2009). Health risk assessment of heavy metals for population via consumption of vegetables. World Applied Science Journal 6(12):1602-1606.

Krissanakriangkrai, O., Suparpacboon, W., Juwa, S., Chacwong, S. and Swaddiwudhipong, W. (2009). Bioavailable cadmium in water, sediment and fish, in a highly contaminated area of Thai-Myammy border. Thammasat International Journal of Science and Technology 14:60-68.

Kuo, S., Heilman, P. E., and Baker, A. S. (1983). Distribution and forms of Cu, Zn, Cd, Fe and Mn in soils near a Copper smelter. Soil Science 135: 101-109.

La’zaro, D. J., Kiddb, P. S., Marty C. M. and Neza, T. (2006). A phyto-geochemical study of the Tra’s-os’Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Science of the Total Environment 354:265-277.

Lee, B. D., Carter, B. J., Basta, N. T. and Weaver, B. (1997). Factors influencing metal distribution in six Oklahoma benchmark soils. Soils Science Society American Journal 61: 218-223.

Li, M. S., Luo, Y. P. and Su, Z. Y. (2007). Heavy metals concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environmental pollution 147:168-175.

Ma, L. Q., Tan, F. and Harris, W. G. (1997). Concentration and distribution of eleven metals in Florida soils. Journal of Environmental Quality 26:769-775.

Macnair, M. R., Tilstone, G. H. and Smith, S. E. (2000). The genetics of metal tolerance and accumulation in higher plants. In: Phyto-remediation of contaminated soil and water. (Terry, N. and Banuelos, G. (eds). pp 235-250. CRC Pres Inc., London.

MAFF (1992). Code of good agricultural practice for the protection of soil, Welch Office Agriculture Department, Draft Consultation Document, MAFF London. pp. 87-153.

Malik, R. N., Husain, S. Z. and Nazir, I. (2010). Heavy metal contamination and accumulation in soil and wild plant species from industrial area of

Islamabad, Pakistan. Pakistan Journal Botany 42(1):291-301.

Nubi, O. A., Osibanjo, O. and Nubi, A. T. (2009). Impact assessment of dumpsite leachate on the qualities of surface water and sediment of River Eku, Ona-Ara Local Government, Oyo State, Nigeria. Science World Journal 3(3):17-20.

Obute, G. C., Ndukwu, B. C. and Eze, E. (2010). Changes in species diversity and physico-chemical properties of plants in abandoned dumpsites in parts of Por-Harcourt, Nigeria. Scientia Africana 9(1): 181-193.

Odukoya, O. O., Bamgbose, O. and Arowolo, T. A. (2000). Heavy metals in topsoil of Abeokuta dumpsites. Global Journal of Pure and Applied Sciences 7:467-472.

Ogwueleka, T. C. (2009). Municipal solid waste characteristics and management in Nigeria. Iran Journal of Environmental Health Science and Engineering 6(3):173-180.

Okalebo, J. R., Gathua, K. W. and Woomer, P. L. (1993). Laboratory methods of soil and plant analysis: A working manual. Marvel EPZ Ltd, Nairobi, Kenya. pp. 11-35.

Ololade, I. A., Ashoghon, A. O. and Adeyemi, O. (2007). Plant level of chromium and nickel at a refuse site. Any positive impact? Journal of Applied Sciences 7(13):1768-1773.

Olsen, S. R. and Sommers, L. E. (1982). Determination of available phosphorus. In: Methods of soil Analysis, Vol.2. (F.L. Page, R.H. Miller, and D.R. Keeney, eds). pp. 403-407. Am. Soc. Agron., Madison.

Osuji, C. L. and Adesiyan, S. O. (2005). The Isiokpo oil pipeline leakage: Total organic carbon/organic matter contents of affected soils. Chemical Biodiversity 2:1079-1084.

Oyelola, O. T., Babatunde, A. I. and Odunlade, A. K. (2009). Phytoremediation of metals from contaminated soil using Lycoperium esculentum (tomato) plant. International Journal of Pure and Applied Science 3(2):44-48.

Ozturk, M., Ozozen, G., Minareci, O. and Minareci, E. (2009). Determination of heavy metals in fish, water and sediments of Avsar dam Lake in Trukey. Iranian Journal of Environmental, Health Science and Engineering 6:73-80.

Prasad, M. N. V. (2005). Nickelophilous plants and their significance in phyto-technologies. Brazilian Journal of Plant Physiology 17(1):1-21.

Prasad, M. N. V. and Strzalka, K. (1999). Impact of heavy metals on photosynthesis. In: Heavy metal stress in plants. (M.N.V. Prasad and J. Hagemeyer, eds). pp. 117-138. Springer Publishers, Berlin.

Ramos, L., Hernandez, L. M. and Gonzalez, M. J. (1994). Sequential fractionation of Cu, Pb, Cd, and Zn in soils from or near Donana national park. Journal of Environmental Quality 23: 50-57.

Shahidi, F., Chavan, U. D. and Mckenzie, D. B. (1999). Chemical composition of Beach Pea (Lathyrus maritimus L.) plant parts. Food Chemistry 64:39-44.

Shanker, A. K. Cervantes, C., Loza Tavera, H. and Avadainayagam, S. (2005). Chromium toxicity in plants. Environment International 31:739-753.

Sharma, P. and Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology (17(1):1-26.

Shauibu, U. O. and Ayodele, J. T. (2002). Bio-accumulation of four heavy metals in leaves of Calostropis procera. Journal Chemical Society of Nigeria 27: 26-27.

Shu, W. S., Lan, C. Y., Zhang, Z. Q. and Wong, M. H. (2000). Use of Vetiver and other three grasses for re-vegetation of Pb/Zn mine tailings at Lechang, Guangdong Province: field experiment. Second International Vetiver Conference, Bangkok, Thailand. pp. 62-78.

Staelens, N., Parkpian, P. and Polprasert, C. (2000). Assessment of metal speciation in sewage sludge dewatered in vertical flow reeds beds using a sequential extraction scheme. Chemical Speciation and Bioavailability 12:97-107.

Stumm, W. and Morgan, J. J. (1981). Aquatic chemistry: An introduction emphasizing chemical equalibria in natural water (2nd ed.) John Wiley and Sons, New York. pp. 86-213.

Su, D. C. and Wong, J. W. C. (2003). Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in Soil amended with fly-ash stabilized sewage sludge. Environment International 29: 895-900.

Tessier, A., Campbell, P. G. C. and Bissom, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7): 844-851.

Tokalioglu, S., Kantal, S., and Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrophotometer after a four stage sequential extraction procedure. Analytical Chemistry Acta 413: 33-40.

Tsai, L. J., Yu, K. C., Chang, J. S. and Ho, S. T. (1998). Fractionation of heavy metals in sediment cores from the Ell-Ren River, Taiwan. Water Sci. Technol. 37: 217-224.

Uba, S., Uzairu, A., Harrison, G. F. S., Balarabe, M. L. and Okunola, O. J. (2008). Assessement of heavy metals bioavailability in dumpsites of Zaira metropolis, Nigeria. African Journal of Biotechnology 7(2): 122-130.

Udom, B. E., Mbagwu, J. S. C., Adesodum, J. K. and Agbim, N. N. (2004). Distribution of zinc, copper, cadmium and Lead in a tropical ultisol after long-

Yu, K. C., Tsai, L. J., Chen, S.H. and Ho, S. T. (2001). Correlation analysis on binding behaviour of heavy metals with sediment matrices. Water Research 4: 2417-2428.

term disposal of sewage sludge. Environment International 30: 467-470.

Udosen, E. D. (1994). Levels of toxic metals in Telfeiria occidentalis from paint industry environment. Journal of Applied Chemistry and Agricultural Resources 1:35-42.

Yusuf, A. A., Arowolo, T. A., and Bamgbose, O. (2003). Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos city, Nigeria. Food Chemistry and Toxicology 41:375-378.

Udosen, E. D., Benson, N. U., Essien, J. P., and Ebong, G. A. (2006). Relation between aqua-regia extractable heavy metals in soil and Manihot utilissima within a municipal Dumpsite. International Journal Soil Sciences 1:27-32.

Zhu, Y. L., Pilon-Smits, E. A., Tarun, A. S., Weber, S. V., Jouanin, L. and Terry, N. (1999a). Cadmium tolerance and accumulation in Indian mustard is enhanced by over expressing gamma-glutarmyl cysteine synthetase. Plant Physiology 121:1169- 1178.

USEPA (1986). Test methods of evaluation of solid waste. In: Contaminated land policies in some industrialized countries. Visser, W. J. F. (ed). pp. 38-41. TCB report RO2 UK.

Zhu, Y. L., Zayed, A. M., Qian, J. H., de-Souza, M. and Terry, N. (1999b). Phyto-accumulation of trace elements by wetland plants: II water hyacinth. Journal of Environmental Quality 28(1):339 -344.

Uwah, E. I., Ndali, N. P., and Ogugbuaja, V. O. (2009). Study of the levels of some agricultural pollutants in soils, and water leaf (Talinum triangulare) obtained in Maiduguri, Nigeria. Journal of Applied Sciences in Environment Sanitation 4(2):71-78.

Zu, Y. Q, Li, Y., Christian, S., Laurent, L. and Lin, F. (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyper-accumulator choice in lamping lead-zinc mine area, China. Environmental International 30:567-576.

Vecera, Z., Mikaska, P., Zdrahal, Z., Docekal, B., Buckora, M., Tynova, Z., Parizek, P., Mosna, J. and Marek, J. (1999). Environmental analytical chemistry, Institute of Analytical Chemistry, Academy of Sciences of the Zech Republic, Brno. Veveric 97:61-142.

Visser, W. J. F. (1993). Contaminated land policies in some industrialized Countries. TCB Report R02:44-88.

Wei, S., Zhou, Q. and Koval, P. V. (2006). Flowering stage characteristics of cadmium hyper-accumulator Solanum nigrum L. and their significance to phytoremediation. Science of the Total Environment 367:441-446.

Whitney, D. A. (1998). Micronutrients: zinc, iron, manganese, and copper. In: Recommended chemical soil test procedures for the north central region. Brown, J. R. (ed). Pp 41-44. Missouri Agric. Experiment Station Bulletin, Missouri.

Xian, X. (1989). Chemical partitioning of Cd, Zn, Pb and Cu in soils near smelters. Journal Environmental Science and Health A6: 527 – 541.

Yeomans, J. C. and Bremmer, J. M. (1991). Carbon and Nitrogen analysis of soils by automated combustion techniques. Commum Soil Science and Plant Analysis 22:843-850.

Yoo, M. S. and James, B. R. (2002). Zinc extractability as a function of pH in organic waste-contaminated soils. Soils Science 167: 246-259.

Yoon, J., Cao, X., Zhou, Q and Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida Site. Science of the Total Environment 368:456-464.

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology 17(1):145-156.

Published

2012-04-20

How to Cite

Heavy Metals Bioavailability and Phyto-accumulation Potentials of Selected Plants on Burrow-pit Dumpsites in Aba and Ntigha Dumpsite in Isiala Ngwa of Abia State, Nigeria. (2012). Nigerian Journal of Biochemistry and Molecular Biology, 27(1&amp;2), 27-45. https://www.nsbmb.org.ng/journals/index.php/njbmb/article/view/282