In-Vitro and In-Silico Anti-Cariogenic Bacterial Activity of Selected Spices Commonly Consumed in South-West Nigeria
DOI:
https://doi.org/10.4314/njbmb.v39i3.9Keywords:
Antibiotics, Cariogenic bacteria, Dental caries, Spices, Target proteinsAbstract
Dental caries is a preventable oral disease simply by practicing good oral hygiene; however, this disease remains a global health challenge due to the difficulties in management and treatment. Onion, ginger, and nutmeg extracts have been reported as potent antibiotics. Thus, the study investigated the efficacy of these three spices against cariogenic bacteria. Samples were collected from consented caried-patients at the Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria. Disc and agar well diffusion methods were used to evaluate the antibiotic sensitivity of the spices against the isolates. The anti-cariogenic potential of significant compounds in each of the spices was further assessed against four bacterial target proteins (DNA gyrase B, dihydrofolate reductase (DHF), D-alanine: D-alanine ligase (Ddl1), and Isoleucyl-tRNA synthetase (IARS). Out of 100 samples collected, hundred and sixty-six (166) isolates were recovered: Pseudomonas aeruginosa (105), Staphylococcus aureus (52), and Streptococcus mutans (9). In-silico studies revealed that kaempferol in onion, luteolin 7-O-glucoside in ginger, and macelignan in nutmeg had high binding affinities for the four target proteins (∆G> -7 kcal/mol). At 100% (1 g/mL) concentration, onions showed a higher zone of inhibition (20-22 mm) against the tested bacteria. In comparison, diameter zones of 20.33 mm and 20.67 mm for ginger, and 19.67 mm and 16.67 mm for nutmeg were observed against Streptococcus mutans and Pseudomonas aeruginosa, respectively. It was also observed that at higher concentrations of 100%, the tested spices had a higher inhibitory effect against the tested bacteria than the control antibiotics.
Downloads
References
Abdel, F.M.A., Barghouth, M.H., Wassel, M.O., Deraz, O.H., Khalil, A.E., Sarsik, H.M., Ali-Mohsen, A.M., Qenawy, A.S. and ElFadl, R.K.(2022). Epidemiology of dental caries inpermanent dentition: evidence from a population-based survey in Egypt. BMC Public Health, 22: 2438. https://doi.org/10.1186/s12889-022-14844-9
Agabalogun, L. (2016). The spices of life: Testing the antimicrobial effects of garlic (Alliumsativum), Cinnamon (cinnamomum zeylanicum), and Clove (Syzygium aromaticum) against Streptococcus mutans. [Last cited on 2016 Jul 12]. Available from:http:// www.google.com.
Ahmed, M.K., Hani, S.F., Ahmad, M.A. and Safaa, A.T. (2016). Antibacterial effect of onion. Scholars Journal of Applied Medical Sciences, 4(11D): 4128-4133.
Aldred, K.J., Kerns, R.J. and Osheroff, N. (2014). Mechanism of quinolone action and resistance. Biochemistry, 53: 1565-1574.
Al-Shahrani, M.A. (2019). Microbiology of dental caries: A Literature Review. Annals of Medical and Health Science Research, 9: 655-659.
Alves, M.J., Hugo, J.C., Froufe, A.F.T., Costa, A F.S., Liliana, G.O., Sara, R.M.O., Rui, M.V., Abreu, M.,P. and Isabel, C.F. (2014). Docking studies in target proteins involved in antibacterial action mechanisms: Extending the knowledge on standard antibiotics to antimicrobial mushroom compounds. Molecules,19: 1672-1684. doi:10.3390/molecules19021672
Amaral, S.M., Cortês A.Q. and Pires, F.R. (2009). Nosocomial pneumonia: importance of the oral environment. Journal of Brazillians Pneumology, 35:1116-1124.
Anwar, F., Muhammad, A., AbdullahIjaz, H., and Muhammad, S. (2019). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (foeniculum vulgare mill.) Seeds from pakistan. Flavour and Fragrance Journal, 24(4): 170-176. https://doi.org/10.1002/ffj.1929
Arif, H., Sohail, A., Farhan, M., Rehman, A.A., Ahmad, A. and Hadi, S.M. (2017). Flavonoids induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. International Journal of Biological Macromolecules, 106: 569-578. https://doi.org/10.1016/j.ijbiomac.2017.08.049
Challaraj, E.S., Vinni, B. and Gayathri, N.K. (2020). A characteristic study on the effect of ginger and nutmeg extracts on pseudomonas and e. Coli biofilms. International Journal of Research in Pharmaceutical Sciences, 11(1): 386-396.
Cheng, Y., Liao, Y., Chen, D., Wang, Y. and Wu, Y. (2019). Prevalence of dental caries and its association with body mass index among school-age children in shenzhen, China. BMC Oral Health, 19: 270. https://doi.org/10.1186/s12903-019-0950-y
Chung, J. Y., Choo, J. H., Lee, M. H., and Hwang, J. K. (2006). Anticariogenic activity of macelignan isolated from myristica fragrans (nutmeg) against streptococcus mutans. Phytomedicine, 13(4): 261-266. doi:10.1016/j. phymed.2004.04.007
Clinical Laboratory Standards Institute (CLSI) (2006). Performance standards for antimicrobial disk susceptibility tests; Approved Standard 9th ed. CLSI document M2-A9. 26:1.
Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews,12(4): 564-582.
Cushnie, T.T. and Lamb A.J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38: 99-107. doi:10.1016/j.ijantimicag.2011.02.014
Devi, A., Singh, V. and Bhatt, A.B. (2012). Study of prevalence and sensitivity pattern of dental plaque against antibiotics and pomegranate. International Journal of Pharmaceutical Sciences and Research, 3(12):5062-5066.
Du, X., Li, Y., Xia, Y.L., Ai, S.M., Liang, J., Sang, P., Ji, X.L., and Liu, S.Q. (2016). Insights into protein-ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2): 1-34. doi:10.3390/ijms17020144.
Elamin, A., Garemo, M. and Mulder, A. (2021). Determinants of dental caries in children in the middle east and North Africa Region: A systematic review based on literature published from 2000 to 2019. BMC Oral Health, 21: 237. doi.org/10.1186/s12903-021- 01482-7
Fajriah, S., Megawati, S., Hudiyono, A, Kosela, S. and Hanaf M. (2016). Chemical constituents and potential cytotoxic activity of n-hexane fraction from myristica fatua houtt leaves. International Symposium on Current Progress in Mathematics and Sciences,1862: 0300871-0300876. doi: 10.1063/1.4991191
Farag, M. A., Sara, E.A., Rashad, H.H., Hesham, R.E., Haider, N.S., Annegret, L., Tarek, F.E., Fouad, O.F., and Ludger, A.W. (2017). Phytochemical profiles and antimicrobial activities of allium cepa red cv. And a. Sativum subjected to different drying methods: A comparative ms-based metabolomics. Molecules, 22: 761 779.doi:10.3390/molecules22050761
Fauzia, K.A., Miftahussurur, M., Syam, A.F., Waskito, L.A., Doohan, D. and Rezkitha, Y. (2020). Biofilm formation and antibiotic resistance phenotype of helicobacter pylori clinical isolates. Toxin, 12: 473. https://doi.org/10.3390/toxins12080473
Fredotovi´c, Ž., Puizina, J., Nazli´c, M., Maravi´c, A., Ljubenkov, I., Soldo, B., Vuko, E. and Baji´c, D. (2021). Phytochemical characterization and screening of antioxidant, antimicrobial and antiproliferative properties of allium cornutum clementi and two varieties of allium cepa l. Peel extracts. Plants, 10: 832. https://doi.org/10.3390/plants10050832
Griffith, A., Mateen, A., Markowitz, K., Singer, S.R., Cugini, C., Shimizu, E., Wiedman, G.R., and Kumar, V. (2022). Alternative antibiotics in dentistry: Antimicrobial peptides. Pharmaceutics, 14:1679. https://doi.org/10.3390/pharmaceutics14081679
Hemavathy, A., Shanthi, P., Sowndharya, C., Thiripura, S.S. and Priyadharshni, K. (2019). Extraction and isolation of bioactive compounds from a therapeutic medicinal plant- wrightia tinctoria (Roxb.). International Journal of Pharmacognosy and Phytochemical Research 11(3);199-204 DOI: 10.25258/phyto.11.3.15
Heo, S.M., Haase, E.M., Lesse, A.J., Steven, R.G. and Scannapieco, F.A. (2008). Genetic relationships between respiratory pathogens isolated from dental plaque and bronchoalveolar lavage fluid from patients in the intensive care unit undergoing mechanical ventilation. Clinical Infectious Diseases, 47: 1562-1570.
Ho, J.M., Bakkalbasi, E., Soll, D. and Miller, C.A. (2018). Drugging tRNA aminoacylation. RNA Biology, 15: 667 677. https:// doi. org/ 10. 1080/15476 286. 2018. 14298 79
Hong, W., Wang, Y. and Chang, Z. (2015). The identification of novel mycobacterium tuberculosis dhfr inhibitors and the investigation of their binding preferences by using molecular modelling. Scientific Reports,16: 15328.
Ifesan, B.O.T., Siripongvutikorn, S. and Voravuthikunchai, S.P. (2009). Application of eleutherine americana crude extract in homemade salad dressing. Journal of Food Protection, 72: 650-655.
Indu, M.N., Hatha, A.A.M., Abirosh, C. Harsha, U. and Vivekanandan, G. (2006). Antimicrobial activity of some of the south-indian spices against serotypes of escherichia coli, salmonella, listeria monocytogenes and aeromonas hydrophila. Brazilian Journal of Microbiology, 37(2): 1-9.
John Yun Niu, Iris Xiaoxue Yin, William Ka Kei Wu, Quan-Li Li, May Lei Mei, Chun Hung Chu (2021). Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Archives of Oral Biology, 122: 105022,https://doi.org/10.1016/j.archoralbio.2020.1050 2. ISSN 0003-9969,
Josef, Y., Beniam, G. and Kurt, R. (2015). Antibiotic resistance of pseudomonas aeruginosa at a single University Hospital Center in Germany Over a 10-year Period. Public Library of Science Journal, 10(10): 0139836.
Khushbu, Y. and Satyam, P. (2016). Dental caries: A review. Asian Journal of Biomedical and Pharmaceutical Sciences, 6(53): 1-7.
Kitamura, Y., Ebihara, A., Agari, Y., Shinkai, A., Hirotsu, K. and Kuramitsu, S. (2009). Structure of d-alanine-d-alanine ligase from thermus thermophilus hb8: cumulative conformational change and enzyme–ligand interactions. Acta Crystallographica. Section D: Structurally, 65: 1098-1106.
Kroemer, R.T. (2007). Structure-based drug design: docking and scoring. Current Protein and Peptide Science, 8: 312 328. http://dx.doi.org/10.2174/138920307781369382
Kumalo, H.M., Bhakat, S. andSoliman, M.E.S. (2015). Theory and applications of covalent docking in drug discovery: Merits and pitfalls. Molecules, 20: 1984-2000. http://dx.doi.org/10.3390/molecules20021984
Kumar, M., Barbhai, M.D., Hasan, M., Punia, S., Dhumal, S., Radha, R.N., Chandran, D., Pandiselvam, R., Kothakota, A., Tomar, M., Satankar, V., Senapathy, M., Anitha, T., De,y A, Sayed, A.A.S., Gadallah, F.M., Amarowicz, R. and Mekhemar, M. (2022). Onion (Allium cepa L.) peels: A review on bioactive compounds and biomedical activities. Biomedicine and Pharmacotherapy, 146: 112498. doi: 10.1016/j.biopha.2021.112498.
Babaeekhou, L. and Ghane, M. (2021). Antimicrobial activity of ginger on cariogenic bacteria: Molecular networking and molecular docking analyses. Journal of Biomolecular Structure and Dynamics, 9(6): 2164-2175. doi:10.1080/07391102.2020.1745283.
Machová, M., Tomáš, B., David, Š., Karel, V. and Petra, B. (2019). Release of volatile compounds from sliced onion analysed by gas chromatography coupled to mass spectrometry and its antimicrobial activity. Journal of Food and Nutrition Research, 58(4): 393-400.
Malmstrom, R.D. and Watowich, S.J. (2011). Using free energy of binding calculations to improve the accuracy of virtual screening predictions. Journal of Chemical Information and Modeling, 51(7): 1648-55. doi: 10.1021/ci200126v.
Marsh, P.D. (2003). Are dental diseases examples of ecological catastrophes? Microbiology, 149(2): 279-94.
Namwase, H., Najjuka, F. and Bbosa, G. (2021). Antibacterial activity of Corchorus olitorius L. and Acmella caulirhiza Del. on Streptococcus mutans, A Cariogenic Bacterium. African Health Sciences, 21(4): 1685-91. https://dx.doi.org/10.4314/ahs.v21i4.23.
Nelio, V., Daniela, A., Filipa, D., Margarida, P., Ana, V.,Liliana, R., Mariana, S., Vanessa, M., Fransisco, P., Beatriz, V., Joao, P. and Filipa, B. (2016). Dental caries: A review. Journal of Dental and Oral Health, 2(5): 1-3.
Nikolic, V., Ljubisa, N., Ana, D., Ivana, G., Maja, U., Ljijana, S., Jelena, S. and Bojana, D. (2021). Chemical composition, antioxidant and antimicrobial activity of nutmeg (Myristica fragrans houtt) seed essential oil. Journal of Essential OilBearing Plants, 24(2): 218-227 DOI: 10.1080/0972060X.2021.1907230
Nile, A., Nile, S.H., Kim, D.H., Keum, Y.S., Seok, P.G. and Sharma, K. (2018). Valorization of onion solid waste and their flavonols for assessment of cytotoxicity, enzyme inhibitory and antioxidant activities. Food and Chemical Toxicology, 119: 281-289.
Nishidonoa Yuto, Azis Saifudinb, Mikio Nishizawac, Takashi Fujitaa, Masatoshi Nakamotoa and Ken Tanakaa (2018). Identification of the chemical constituents in ginger (Zingiber officinale) responsible for thermogenesis. Natural Product Communications, 13(7): 1-5.
Oliver, A., Mulet, X., Lopez-Causape, C. and Juan, C. (2015). The increasing threat of pseudomonas aeruginosa high-risk clones. Drug Resistance Updates. 21(22): 41-59.
Panggabean, K.A., Rusmarilin, H. and Suryanto, D. (2019). The utilization of nutmeg seed (Myristica fragrans houtt) extract as an antimicrobial on tempeh sausage. IOP Conf. Series: Earth and Environmental Science, 260: 012087 doi: 10.1088/1755- 1315/260/1/012087
Poirel, L., Lambert T., Turkoglu, S., Ronco, E., Gaillard, J. and Nordmann, P. (2001). Characterizationof class 1 integrons from pseudomonas aeruginosa that contain the bla (vim-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrobial Agents and Chemotherapy, 45: 546-552.
Popoola, O.D., Thomas, B.T., Agu, G.C. and Anyamene, C.O. (2017). Presence of efflux pump mediated antibiotic resistance in gram negative bacteria isolated from primary school pupils in ago-iwoye, ogun state, Nigeria. African Journal of Science and Nature, 5: 1-7.
Pranay, J. and Kumar, P. (2009). Antibiotic sensitivity pattern of streptococcus.mutans against commercially available drugs. Journal of Pharmacy Research, 2(7): 1250-1252.
Pratama, M.R.., Suratno, S. and Mulyani, E. (2018). Antibacterial activity of akar kuning (arcangelisia flava) secondary metabolites: molecular docking approach. Asian Journal of Pharmaceutical and Clinical Research, 11(11): 447-451. DOI 10.22159/ajpcr.2018.v11i11.29189
Raghavendran, K., Mylotte, J.M. and Scannapieco, F.A. (2007). Nursing home-associated pneumonia, hospital-acquired pneumonia and ventilator-associated pneumonia: The contribution of dental biofilms and periodontal inflammation. Periodontology, 44:164- 177.
Rashid, N., Thapliyal C. and Chaudhuri P. (2016). Dihydrofolate reductase as a versatile drug target in healthcare. Journal of Pharmacy and Pharmacology, 7: 247-57.
Rathee M, and Sapra A. (2020). Dental Caries. In: StatPearls. Treasure Island (FL): StatPearls Publishing; Sayed, O.R, Farouk M. Gadallah O, Ryszard Amarowicz P, Mohamed Mekhemar Q, (2022).Onion (Allium cepa L.) Peels: A review on bioactive compounds and biomedical activities. Biomedicine and Pharmacotherapy 146: 12498-112514.
Schweitzer, B., Dicker, A.P. and Bertino, J.R. (1990). Dihydrofolate reductase as a therapeutic target. Federation of American Societies for Experimental Biology Journal, 4: 2441-52.
Sharma, K., Roscoe, P,, Vijender, Si,, Mohammed, A, (2016). Chemical composition and antimicrobial activity of fresh rhizome essential oil of zingiber officinale. Pharmacognosy Journal, 8(3) :1-6.
Singh, G., Kapoor I.P., Singh P., de Heluani C.S., de Lampasona M.P. and Catalan, C.A. (2008). Chemistry, Antioxidant and antimicrobial investigations on essential oil and oleoresins of zingiber officinale. Food and Chemical Toxicology, 46(10): 3295-302. doi: 10.1016/j.fct.2008.07.017.
Slayton, R. L., M. Fontana, D. Young, N. Tinanoff, B. Novy, R. D. Lipman, and L. Robinson. (2016). Dental caries management in children and adults. NAM Perspectives. Discussion Paper, National Academy of Medicine, Washington, DC. https://doi.org/10.31478/201609d
Trott, O. and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31: 455-461. DOI 10.1002/jcc.21334
Warreth, A. (2023). Dental caries and its management. International Journal of Dentistry, 9365845. doi:10.1155/2023/9365845. PMID: 36636170; PMCID: PMC9831703.
Yadav, K. and Prakash, S. (2017). Dental caries: A microbiological approach. Journal of Clinical and Infectious Disease Practice, 22(1): 1-15.
Yousufi, K. (2012). To study antibacterial activity of allium sativum, zingiber officinale and allium cepa by kirby-bauer method. IOSR Journal of Pharmacy and Biological Sciences, 4(5):6-8.
Qiu, W., Zhou, Y., Li, Z., Huang, T., Xiao, Y., Cheng, L., Peng, X., Zhang, L.and Ren, B. (2020). Application of antibiotics/antimicrobial agents on dental caries. BioMed Research International, 5658212. doi: 10.1155/2020/5658212. PMID: 32076608; PMCID: PMC7013294.
Zhihao, Q., Liu, A., Li, P., Liu, C., Xiao, W., Huang, J., Liu, Z. and Zhang, S. (2020). Advances in physiological functions and mechanisms of (-) epicatechin. Critical Reviews in Food Science and Nutrition,1:23. doi:10.1080/10408398.2020.1723057
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Georgia C. Agu, Ibukun T. Sossou, Temitope D. Abiola, Oluwabukola T. Afolabi, Ajoke S. Sanusi, Adeleke K. Atunnise (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.