Anti-diabetic Inhibitory Effect of Identified Phytochemicals in Ziziphus spina-christi on alpha-Amylase: In silico Screening Approach

Authors

  • Mohammed A. Abdulrasak Department of Biochemistry, Federal University of Lafia, Lafia, Nigeria Author https://orcid.org/0000-0002-8753-6208
  • Abubakar Mohammed Department of Biochemistry, Federal University of Lafia, Lafia, Nigeria Author
  • Abdulrahman Hamza Department of Biochemistry, Federal University of Lafia, Lafia, Nigeria Author
  • Emmanuel O. Olagoke Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria Author
  • Amina L. Musa Department of Science Laboratory Technology, Federal University of Lafia, Lafia, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v39i3.1

Keywords:

Ziziphus spina-christi, Diabetes Mellitus, phytochemicals, in silico, Amylase, Jujubogenin

Abstract

Diabetes Mellitus is a metabolic disorder characterised by persistent high concentration of blood glucose. Its progression results in health complications like neuropathy, retinopathy, nephropathy, pathology of other cell or tissue types of the body and death. Ziziphus spina-christi is a recognised plant for its nutritive and medicinal values. The aim of the study was to screen various identified phytochemicals in Ziziphus spina-christi on alpha-amylase which is an anti-diabetic drug target through in silico approach. A library of identified phytochemicals of Ziziphus spina-christi from literature search was built by downloading the compounds from PubChem. The hits were screened for their drug likeness and pharmacokinetics using the Swiss ADME predictor. The suitable hits from the drug likeness were docked with amylase using Autodock vina and molecular interactions visualized with Discovery studio visualizer. Fifteen compounds in the library were selected based on the Lipinski rule. Jujubogenin-amylase complex had the lowest binding energy of - 8.9 Kcal/mol, followed by maslinic acid, and (+)-Catechin cianidanol complexes with binding energies -8.5 and -8.4 Kcal/mol respectively. All the fifteen phytochemicals that did not violate the Lipinski drug likeness rule had better binding affinity for amylase compared to the clinically approved Acarbose with a binding energy of - 7.3 Kcal/mol. Hence, this investigation on the bioactive compounds from Ziziphus spina-christi especially Jujubogenin suggests its potential inhibitory activity on alpha-amylase for diabetes treatment.

Downloads

Download data is not yet available.

References

Abalaka, M., Daniyan, S. and Mann, A. (2010). Evaluation of the antimicrobial activities of two Ziziphus species (Ziziphus mauritiana L. and Ziziphus spinachristi L.) on some microbial pathogens. African Journal of Pharmacy and Pharmacology, 4, 135–139.

Ads, E. N., Hassan, S. I., Rajendrasozhan, S., Hetta, M. H., Aly, S. H. and Ali, M. A. (2022). Isolation, structure elucidation and antimicrobial evaluation of natural pentacyclic triterpenoids and phytochemical investigation of different fractions of Ziziphus spina-christi (L.) stem bark using LCHRMS analysis. Molecules (Basel, Switzerland), 27(6). https://doi.org/10.3390/MOLECULES27061805

Akinloye, O. A., Akinloye, D. I., Onigbinde, S. B. and Metibemu, D. S. (2020). Phytosterols demonstrate selective inhibition of COX-2: In-vivo and in-silico studies of Nicotiana tabacum. Bioorganic Chemistry, 102, 104037. https://doi.org/10.1016/J.BIOORG.2020.104037

Asgarpanah, J. and Haghighat, E. (2012). Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. Undefined, 6(31). https://doi.org/10.5897/AJPP12.509

Azam, F., Vijaya Vara Prasad, M., Thangavel, N., Kumar Shrivastava, A. and Mohan, G. (2012). Structure-based design, synthesis and molecular modeling studies of thiazolyl urea derivatives as novel anti-parkinsonian agents. Medicinal Chemistry, 8(6), 1057–1068. https://doi.org/10.2174/157340612804075034

Benet, L. Z., Hosey, C. M., Ursu, O. and Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/J.ADDR.2016.05.007

Bhandari, P., Sendri, N. and Devidas, S. B. (2020). Dammarane triterpenoid glycosides in Bacopa monnieri: A review on chemical diversity and bioactivity. Phytochemistry, 172, 112276. https://doi.org/10.1016/J.PHYTOCHEM.2020.112276

Bozicevic, A., De Mieri, M., Di Benedetto, A., Gafner, F. and Hamburger, M. (2017). Dammarane-type saponins from leaves of Ziziphus spina-christi. Phytochemistry, 138, 134–144. https://doi.org/10.1016/J.PHYTOCHEM.2017.02.028

Brayer, G. D., Luo, Y. and Withers, S. G. (1995). The structure of human pancreatic alpha-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Science: A Publication of the Protein Society, 4(9), 1730–1742. https://doi.org/10.1002/PRO.5560040908

Brown, C. M., Reisfeld, B. and Mayeno, A. N. (2008). Cytochromes P450: A Structure-based summary of biotransformations using representative substrates. 40(1), 1–100. https://doi.org/10.1080/03602530701836662

Daina, A., Michielin, O. and Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules OPEN. Nature Publishing Group. https://doi.org/10.1038/srep42717

Dallakyan, S. and Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19/COVER

Daussin, F. N., Heyman, E. and Burelle, Y. (2021). Effects of (−)-epicatechin on mitochondria. Nutrition Reviews, 79(1), 25–41. https://doi.org/10.1093/NUTRIT/NUAA094

Deng, J., Wang, H., Mu, X., He, X., Zhao, F. and Meng, Q. (2020). Advances in research on the preparation and biological activity of maslinic acid. Mini-Reviews in Medicinal Chemistry, 21(1), 79–89. https://doi.org/10.2174/1389557520666200722134208

Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R. and Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1), W53–W58. https://doi.org/10.1093/NAR/GKU401

Eberhardt, J., Santos-Martins, D., Tillack, A. F. and Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203

el Maaiden, E., el Kharrassi, Y., Qarah, N. A. S., Essamadi, A. K., Moustaid, K. and Nasser, B. (2020). Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. Journal of Ethnopharmacology, 259. https://doi.org/10.1016/J.JEP.2020.112950

Elekofehinti, O. O., Iwaloye, O., Josiah, S. S., Lawal, A. O., Akinjiyan, M. O. and Ariyo, E. O. (2021). Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Molecular Diversity, 25(3). https://doi.org/10.1007/s11030-020-10151-w

El-Shahir, A. A., El-Wakil, D. A., Latef, A. A. H. A. and Youssef, N. H. (2022). Bioactive Compounds and antifungal activity of leaves and fruits methanolic extracts of Ziziphus spina-christi L. Plants (Basel, Switzerland), 11(6). https://doi.org/10.3390/PLANTS11060746

Farmani, F., Moein, M., Amanzadeh, A., Kandelous, H. M., Ehsanpour, Z. and Salimi, M. (2016). Antiproliferative evaluation and apoptosis induction in MCF- 7 cells by Ziziphus spina christi leaf extracts. Asian Pacific Journal of Cancer Prevention : APJCP, 17(1), 315–321. https://doi.org/10.7314/APJCP.2016.17.1.315

Gurung, A. B., Ali, M. A., Bhattacharjee, A., Abul Farah, M., Al-Hemaid, F., Abou-Tarboush, F. M., Al-Anazi, K. M., Al-Anazi, F. S. M. and Lee, J. (2016). Molecular docking of the anticancer bioactive compound proceraside with macromolecules involved in the cell cycle and DNA replication. Genetics and Molecular Research: GMR, 15(2). https://doi.org/10.4238/GMR.15027829

Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A. and Al-Anazi, K. M. (2020). Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M pro enzyme through in silico approach. Life Sciences, 255. https://doi.org/10.1016/J.LFS.2020.117831

Hou, T. J. and Xu, X. J. (2004). Erratum: ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors (J. Chem. Inf. Comput. Sci. (2003) 43, (2137-2152). In Journal of Chemical Information and Computer Sciences 44, (2). https://doi.org/10.1021/ci040020a

International Diabetes Federation. (2021). IDF Diabetes Atlas, 10th edn. Brussels, Belgium. Available at: https://www.diabetesatlas.org

Jafarian, A., Zolfaghari, B. and Shirani, K. (2014). Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells. Advanced Biomedical Research, 3(1), 38. https://doi.org/10.4103/2277-9175.125727

Kagawa, M., Fujimoto, Z., Momma, M., Takase, K. and Mizuno, H. (2003). Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose. Journal of Bacteriology, 185(23), 6981–6984. https://doi.org/10.1128/JB.185.23.6981-6984.2003

Karimov, R. R., Tan, D. S. and Gin, D. Y. (2018). Synthesis of the hexacyclic triterpene core of the jujuboside saponins via tandem Wolff rearrangement–intramolecular ketene hetero-Diels–Alder reaction. Tetrahedron, 74(26), 3370–3383. https://doi.org/10.1016/j.tet.2018.04.051

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J. and Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/NAR/GKAA971

Kumar, H. S. S., Kumar, S. R., Kumar, N. N. and Ajith, S. (2021). Molecular docking studies of gyrase inhibitors: weighing earlier screening bedrock. In Silico Pharmacology, 9(1). https://doi.org/10.1007/s40203-020-00064-9

Li, C., Begum, A., Numao, S., Kwan, H. P., Withers, S. G. and Brayer, G. D. (2005). Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts. Biochemistry, 44(9), 3347–3357. https://doi.org/10.1021/BI048334E

Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0

Murray, M. (2006). Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. The Journal of Pharmacy and Pharmacology, 58(7), 871–885. https://doi.org/10.1211/JPP.58.7.0001

Murthy, H. N. (2022). Biotechnological production of bacosides from cell and organ cultures of Bacopa monnieri. Applied Microbiology and Biotechnology 2022 106:5, 106(5), 1799–1811. https://doi.org/10.1007/S00253-022-11834-0

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3(10), 1–14. https://doi.org/10.1186/1758-2946-3-33/tables/2

Omoboyowa, D. A., Balogun, T. A., Omomule, O. M. and Saibu, O. A. (2021). Identification of terpenoids from abrus precatorius against Parkinson’s disease proteins using in silico approach. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211050757

Panduraju, T., Rao, P. R. S. and Kumar, V. S. (2009). A study on antimicrobial activity of Rumex vesicarius Linn. International Journal of Pharmacy and Technology, 1(1), 21–25.

Pawlowska, A. M., Camangi, F., Bader, A. and Braca, A. (2009). Flavonoids of Zizyphus jujuba L. and Zizyphus spina-christi (L.) Willd (Rhamnaceae) fruits. Food Chemistry, 112(4), 858–862. https://doi.org/10.1016/j.foodchem.2008.06.053

Rosak, C. and Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity, 5, 357–367. https://doi.org/10.2147/DMSO.S28340

Sakna, S. T., Mocan, A., Sultani, H. N., El-fiky, N. M., Wessjohann, L. A. and Farag, M. A. (2019). Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chemistry, 293, 233–246. https://doi.org/10.1016/j.foodchem.2019.04.097

Sarfaraj, H. M., Azam, F., Ahmed Eldarrat, H., Haque, A., Khalid, M., Zaheen Hassan, M., Ali, M., Arif, M., Ahmad, I., Zaman, G., Alabdallah, N. M. and Saeed, M. (2022). Structural, functional, molecular, and biological evaluation of novel triterpenoids isolated from Helichrysum stoechas (L.) Moench. Collected from Mediterranean Sea bank: Misurata- Libya. Arabian Journal of Chemistry, 15(6), 103818. https://doi.org/10.1016/j.arabjc.2022.103818

Terao, J. and Mukai, R. (2014). Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Archives of Biochemistry and Biophysics, 559, 12–16. https://doi.org/10.1016/J.ABB.2014.04.002

Trott, O. and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA-NA. https://doi.org/10.1002/JCC.21334

Tuenter, E., Foubert, K., Staerk, D., Apers, S. and Pieters, L. (2017). Isolation and structure elucidation of cyclopeptide alkaloids from Ziziphus nummularia and Ziziphus spina-christi by HPLC-DAD-MS and HPLC-PDA-(HRMS)-SPE-NMR. Phytochemistry, 138, 163–169. https://doi.org/10.1016/j.phytochem.2017.02.029

Vahedi, F., Fathi Najafi, M. and Bozari, K. (2008). Evaluation of inhibitory effect and apoptosis induction of Zyzyphus jujube on tumor cell lines, an in vitro preliminary study. Cytotechnology, 56(2), 105. https://doi.org/10.1007/S10616-008-9131-6

Zheng, Y., Ley, S. H. and Hu, F. B. (2017). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology 2017 14:2, 14(2), 88–98. https://doi.org/10.1038/nrendo.2017.151

Published

2024-09-30

How to Cite

Anti-diabetic Inhibitory Effect of Identified Phytochemicals in Ziziphus spina-christi on alpha-Amylase: In silico Screening Approach. (2024). Nigerian Journal of Biochemistry and Molecular Biology, 39(3), 117-128. https://doi.org/10.4314/njbmb.v39i3.1

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.