Determination of Bioactive Components and Pharmacological Potential of Ethanol Extract of Lannea egregia Shoot

Authors

  • Oyinlade C. Ogundare Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu, Nigeria Author
  • Seide M. Akoro Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu, Nigeria Author
  • Mutinat A. Omotayo Lagos State University of Science & Technology, Ikorodu Author
  • Adewale O. Adepoju Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu, Nigeria Author
  • Abimbola A. Obayomi Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu, Nigeria Author
  • Victoria I. Oludare Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v40i1.14

Keywords:

Lannea egregia, Ethanol extract, Bioactive compound, Antioxidant, Cytotoxicity

Abstract

Lannea egregia, a plant species with a rich ethnobotanical history, has garnered significant interest due to its diverse array of bioactive components. This study investigated the pharmacological potential of bioactive components derived from L. egregia shoot extracts. The ethanol extract of L. egregia shoot (EELES) was studied for secondary metabolites using high-performance liquid chromatography (HPLC). Subsequently, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of EELES was determined. The cytotoxicity of the extract was evaluated through the brine shrimp lethality assay (BSLA). Bioactive compounds such as atropine, brucine, naringenin, caffeine, quercetin, maleic acid, saponin, glutathione and coumaric acid were detected in the ethanol extract through the HPLC analysis. The most abundant of EELES components is maleic acid (70.45 ppm), while the least abundant is atropine (3.05 ppm). Like the vitamin C C (58.06 ± 0.03 μg/mL), the EELES exhibited a noteworthy DPPH radical scavenging activity at a median inhibitory concentration (IC50) of 69.03 ± 0.03 μg/mL. Moreover, both EELES and methotrexate showed considerable cytotoxic activity on nauplii at IC50 of 30.08 ± 0.53 μg/mL and 0.93 ± 0.04 μg/mL, respectively. The study concluded that ethanol extract from L. egregia shoots contains various bioactive components with pharmacological relevance and exhibits antioxidant and cytotoxic properties, making them a promising source of new cancer drugs.

Downloads

Download data is not yet available.

Author Biography

  • Mutinat A. Omotayo, Lagos State University of Science & Technology, Ikorodu

    Department of Chemical Science, Lagos State University of Science and Technology, Ikorodu. Lecturer I

References

Al-Dhabi, N. A., Arasu, M. V., Park, C. H., & Park, S. U. (2015). An up-to-date review of rutin and its biological and pharmacological activities. EXCLI Journal, 14(Table 1), 59–63. https://doi.org/10.17179/excli2014-663

Aliyazcoglu, R., Sahin, H., Erturk, O., Ulusoy, E., & Kolayli, S. (2013). Properties of phenolic composition and biological activity of propolis from Turkey. International Journal of Food Properties, 16(2), 277–287. https://doi.org/10.1080/10942912.2010.551312

Arafah, A., Rehman, M. U., Mir, T. M., Wali, A. F., Ali, R., Qamar, W., Khan, R., Ahmad, A., Aga, S. S., Alqahtani, S., & Almatroudi, N. M. (2020). Multi-therapeutic potential of naringenin (4′,5,7-trihydroxyflavonone): experimental evidence and mechanisms. Plants, 9(12), 1784. https://doi.org/10.3390/plants9121784

Arslan, M. E. (2021). Anticarcinogenic properties of malic acid on glioblastoma cell line through necrotic cell death mechanism. MANAS Journal of Engineering, 9(1), 22–29. https://doi.org/10.51354/mjen.848282

Ashraf, M. F., Aziz, M. A., Stanslas, J., Ismail, I., & Kadir, M. A. (2013). Assessment of antioxidant and cytotoxicity activities of saponin and crude extracts of Chlorophytum borivilianum. 2013.

Cappelletti, S., Daria, P., Sani, G., & Aromatario, M. (2014). Caffeine: cognitive and physical performance enhancer or psychoactive drug? Current Neuropharmacology, 13(1), 71–88. https://doi.org/10.2174/1570159x13666141210215655

Dilshad, E., Bibi, M., Sheikh, N. A., Tamrin, K. F., Mansoor, Q., Maqbool, Q., & Nawaz, M. (2020). Synthesis of functional silver nanoparticles and microparticles with modifiers and evaluation of their antimicrobial, anticancer, and antioxidant activity. Journal of Functional Biomaterials, 11(4). https://doi.org/10.3390/jfb11040076

Elansary, H. O., Szopa, A., Kubica, P., Ekiert, H., El-Ansary, D. O., Al-Mana, F. A., & Mahmoud, E. A. (2020). Polyphenol content and biological activities of Ruta graveolens L. and Artemisia abrotanum L. in Northern Saudi Arabia. Processes, 8(5), 1–18. https://doi.org/10.3390/PR8050531

Hajlaoui, H., Arraouadi, S., Mighri, H., Ghannay, S., Aouadi, K., Adnan, M., Elasbali, A. M., Noumi, E., Snoussi, M., & Kadri, A. (2022). HPLC-MS profiling, antioxidant, antimicrobial, antidiabetic, and cytotoxicity activities of Arthrocnemum indicum (Willd.) Moq. Extracts. Plants, 11(2). https://doi.org/10.3390/plants11020232

Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249–268. https://doi.org/10.1007/s12298-017-0422-2

Idowu, P. A., Ekemezie, L. C., & Olaiya, C. O. (2020). Phytochemical, antioxidant and antimicrobial studies of L.egregia Engl. & K. Krause (Anacardiaceae) extracts and chromatographic fractions. Journal of Phytomedicine and Therapeutics, 19(1), 348–363. https://doi.org/10.4314/jopat.v19i1.4

Great, I. E., & Onoharigho, F. O. (2022). Analysis of phytochemical constituents and antioxidant potential of bitter kola leaf extract towards bioactive food, Nutrition and health resources. Organic & Medicinal Chemistry International Journal, 11(5). https://doi.org/10.19080/OMCIJ.2022.11.555823

Srimathi Priyanga, K., & Vijayalakshmi, K. (2017). Investigation of antioxidant potential of quercetin and hesperidin: An in vitro approach. Asian Journal of Pharmaceutical and Clinical Research, 10(11), 83–86. https://doi.org/10.22159/ajpcr.2017.v10i11.20260

Khater, M., Ravishankar, D., Greco, F., & Osborn, H. M. I. (2019). Metal complexes of flavonoids: their synthesis, characterisation and enhanced antioxidant and anticancer activities. Future Medicinal Chemistry, 11(21), 2845–2867. https://doi.org/10.4155/fmc-2019-0237

Lee, K. H., Cha, M., & Lee, B. H. (2020). Neuroprotective effect of antioxidants in the brain. International Journal of Molecular Sciences, 21(19), 1–29. https://doi.org/10.3390/ijms21197152

Lu, L., Huang, R., Wu, Y., Jin, J. M., Chen, H. Z., Zhang, L. J., & Luan, X. (2020). Brucine: A review of phytochemistry, pharmacology, and toxicology. Frontiers in Pharmacology, 11(April), 1–6. https://doi.org/10.3389/fphar.2020.00377

Naher, S., Aziz, Md. A., Akter, Mst. I., Rahman, S. M. M., Sajon, S. R., & Mazumder, K. (2019). Anti-diarrheal activity and brine shrimp lethality bioassay of methanolic extract of Cordyline fruticosa (L.) A. Chev. leaves. Clinical Phytoscience, 5(1), 4–9. https://doi.org/10.1186/s40816-019-0109-z

Ogundajo, A. L., Ewekeye, T., Sharaibi, O. J., Owolabi, M. S., Dosoky, N. S., & Setzer, W. N. (2021). Antimicrobial activities of sesquiterpene-rich essential oils of two medicinal plants, L. egregia and Emilia sonchifolia, from Nigeria. Plants, 10(3), 1–11. https://doi.org/10.3390/plants10030488

Ogundare, O., Akoro, S., Ogunfowora, A., & Oladunni, A. (2017). Investigation of antioxidant activity and cytotoxic effect of stem of Anthocleista djalonensis. European Journal of Medicinal Plants, 20(1), 1–8. https://doi.org/10.9734/ejmp/2017/33803

Ogundare, O. C., Adedosu, O. T., Afolabi, O. K., Adeleke, G. E., Akinboro, T., Daniel, A. A., Akoro, S. M., & Oludare, V. I. (2023). Ethnobotanical survey, physiochemical composition and preliminary cytotoxic evaluation of some medicinal plants with anticancer potential from certain areas in South-West Nigeria. Annual Research & Review in Biology, X, 27–42. https://doi.org/10.9734/arrb/2023/v38i130566

Ogundare, O. C., Saibu, G. M., Adu, O. B., Akinyemi, T. V, & Adepoju, A. O. (2020). A study of cytotoxic potential and antioxidant activity of fruit of Annona muricata. International Journal of Zoology and Applied Biosciences, 5(3), 139–148. http://www.ijzab.com

Rafiu, B. O., Sonibare, A. M., & Adesanya, E. O. (2019). Phytochemical screening, antimicrobial and antioxidant studies of L. egregia Engl. and K. Krause (Anacardiaceae) stem bark. Journal of Medicinal Plants for Economic Development, 3(1), 81–90. https://doi.org/10.4102/jomped.v3i1.62

Ravetti, S., Garro, A. G., Gaitán, A., Murature, M., Galiano, M., Brignone, S. G., & Palma, S. D. (2023). Naringin: Nanotechnological strategies for potential pharmaceutical applications. Pharmaceutics, 15(3), 1–20. https://doi.org/10.3390/pharmaceutics15030863

Rodrigues, A. B., De Almeida-Apolonio, A. A., Alfredo, T. M., Da Silva Dantas, F. G., Campos, J. F., Cardoso, C. A. L., De Picoli Souza, K., & De Oliveira, K. M. P. (2019). Chemical composition, antimicrobial activity, and antioxidant activity of Ocotea minarum (Nees & Mart.) mez. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/5736919

Stapel, J., Oppermann, C., Richter, D. U., Ruth, W., & Briese, V. (2015). Anticarcinogenic effects of ethanolic extracts from root and shoot of Lupinus angustifolius on breast carcinoma cell lines MCF-7 and BT20. Journal of Medicinal Plants Research, 9(17), 561–568. https://doi.org/10.5897/jmpr2014.5392

Tehami, W., Nani, A., Khan, N. A., & Hichami, A. (2023). New insights into the anticancer effects of p-coumaric acid: Focus on colorectal cancer. Dose-Response, 21(1), 1–9. https://doi.org/10.1177/15593258221150704

Timilsena, Y. P., Phosanam, A., & Stockmann, R. (2023). Perspectives on saponins: Food functionality and applications. International Journal of Molecular Sciences, 24(17). https://doi.org/10.3390/ijms241713538

Zhang, J., Li, H., Wang, W., & Li, H. (2022). Assessing the anti-inflammatory effects of quercetin using network pharmacology and in-vitro experiments. Experimental and Therapeutic Medicine, 23(4). https://doi.org/10.3892/etm.2022.11230

Additional Files

Published

2025-10-31

Data Availability Statement

Research data are available in the submitted manuscript.

How to Cite

Determination of Bioactive Components and Pharmacological Potential of Ethanol Extract of Lannea egregia Shoot. (2025). Nigerian Journal of Biochemistry and Molecular Biology, 40(1), 107-115. https://doi.org/10.4314/njbmb.v40i1.14