Humic Acid Ameliorates DSS-Induced Colitis by Enhancing MUC-2 Expression and Restoring Colonic Histoarchitecture in Rats
DOI:
https://doi.org/10.4314/njbmb.v40i1.15Keywords:
Inflammatory bowel diseases, humic acidAbstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder that involves any part of the colon. It typically presents with symptoms such as bloody diarrhea, abdominal pain and rectal urgency. Humic acid isa chemical produce by decaying organic matters, and has immune stimulating effect but its mechanistic role in treating UC remains underexplored. This study investigates the role of humic acid (HA) in attenuating Dextran Sulfate Sodium (DSS)-induced UC model in male Wistar rats. Twenty male Wistar rats were randomly assigned to groups (n = 6). Group 1 served as controls; Group 2 received 5% DSS alone; Group 3 received 5% DSS followed by humic acid (30 mg/kg); and Group 4 received 5% DSS followed by sulfasalazine (200 mg/kg). DSS was administered orally to induce colitis in Groups 2, 3, and 4. Colitis was induced for five days and drug treatment done for another five days. The disease activity index was assessed on days 1, 3, 5, and 10. Animals were euthanized by cervical dislocation and colon specimens harvested for macroscopic assessment and histological and biochemical assays. Humic acid treatment significantly attenuated DSS-induced colitis by reducing inflammation markers (MPO, TNF-α, interleukin-6, interleukin-1β, and arginase) and restoring colonic histological integrity. Significant improvements were observed in colonic tissue nitrite levels and MUC-2 expression. Conclusively, HA shows promise as an alternative therapeutic for UC, offering anti-inflammatory, and mucosal barrier-protective effects.
Downloads
References
Ahfeethah, F., Elazomi, A., & Kammon, A. (2023). Effect of humic acid and probiotics on immunity of broiler chickens. Open Veterinary Journal, 13(7), 839–845. https://doi.org/10.5455/OVJ.2023.v13.i7.5
Bastaki, S.M.A., Al Ahmed, M.M., Al Zaabi, A., Amir, N., Adeghate, E. (2016). Effect of turmeric on colon histology, body weight, ulcer, IL-23, MPO and glutathione in acetic-acid-induced inflammatory bowel disease in rats. BMC Complementary and Alternative Medicine, 16:72. https://doi.org/10.1186/s12906-016-1057-5
Burri, E., Maillard, M.H., Schoepfer, A.M., Seibold, F., Van Assche, G., Rivière, P., Laharie, Z., Manz, M. (2020). Treatment algorithm for mild and moderate-to-severe ulcerativecolitis:An update. Digestion,101(1):2–15. https://doi.org/10.1159/000504092
Cai, Z., Wang, S., Li, J. (2021). Treatment of inflammatory bowel disease: a comprehensive review. Frontiers in medicine, 8:765474. https://doi.org/10.3389/fmed.2021.765474
Chaitra, P., Math, K.K., Bidari, B.I., Jagadeesh, K.S. (2018). Extraction and characterization of humic acid from vermicompost and farm yard manure. Journal of Pharmacognsy Phytochemisty, 7(6):573-575.
Chassaing, B., Aitken, J.D., Malleshappa, M., Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocol in Immunology, 104:15.25.1-15.25.14. https://doi.org/10.1002/0471142735.im1525s104
Cooper, H., Murthy, S.N., Shah, R.S., Sedergran, D.J. (1993). Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, 69(2):238–249.
Dzobo, K. (2022). The role of natural products as sources of therapeutic agents for innovative drug discovery. Comprehensive Pharmacology, 408–422. doi: 10.1016/B978-0-12-820472-6.00041-4
Eichele, D.D., Kharbanda, K.K. (2017). Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 23(33):6016-6029. https://doi.org/10.3748/wjg.v23.i33.6016
Gerges, S.H., Tolba, M.F., Elsherbiny, D.A., El-Demerdash, E. (2020). The natural flavonoid galangin ameliorates dextran sulphate sodium–induced ulcerative colitis in mice: effect on toll-like receptor 4, inflammation and oxidative stress. Basic Clinical Pharmacology, 127:10–20.
Gill, P.A., Inniss, S., Kumagai, T., Rahman, F.Z., Smith, A.M. (2022). The role of diet and gut microbiota in regulating gastrointestinal and inflammatory disease. Frontiers in Immunology, 13:866059.
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry, 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X
Herrero-Cervera, A., Soehnlein, O., Kenne, E. (2022). Neutrophils in chronic inflammatory diseases. Cellular and Molecular Immunology, 19:177–191. https://doi.org/10.1038/s41423-021-00832-3
Hodges, P., Kelly, P. (2020). Inflammatory bowel disease in Africa: what is the current state of knowledge? International Health,12(3):222-230. https://doi.org/10.1093/inthealth/ihaa005
Hriciková, S., Kožárová, I., Hudáková, N., Reitznerová, A., Nagy, J., Marcinčák, S. (2023). Humic substances as a versatile intermediary. Life, 13(4):858. https://doi.org/10.3390/life13040858
Huang, B., Wang, L., Liu, M., Wu, X., Lu, Q., Liu, R. (2022). The underlying mechanism of A-type procyanidins from peanut skin on DSS-induced ulcerative colitis mice by regulating gut microbiota and metabolism. Journal of Food Biochemistry, 46(7). https://doi.org/10.1111/jfbc.14103
Huang, J., Xu, P., Shao, M., Wei, B., Zhang, C., & Zhang, J. (2023). Humic acids alleviate dextran sulfate sodium-induced colitis by positively modulating gut microbiota. Frontiers in microbiology, 14, 1147110. https://doi.org/10.3389/fmicb.2023.1147110
Ijomone, O.M., Olatunji, S.Y., Owolabi, J.O., Naicker, T., Aschner, M. (2018). Nickel-induced neurodegeneration in the hippocampus, striatum and cortex; an ultrastructural insight, and the role of caspase-3 and α-synuclein. Journal of Trace Elements in Medicine and Biology, 50:16-23. https://doi.org/10.1016/j.jtemb.2018.05.017
Jädert, C., Phillipson, M., Holm, L., Lundberg, J. O., & Borniquel, S. (2013). Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox biology, 2, 73–81. https://doi.org/10.1016/j.redox.2013.12.012.
Kang, Y., Park, H., Choe, B.H., Kang, B. (2022). The role and function of mucins and its relationship to inflammatory bowel disease. Frontiers in Medicine, 9:848344. https://doi.org/10.3389/fmed.2022.848344
Khan, A.A., Alsahli, M.A., Rahmani, A.H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Medical Sciences, 6(2):33. https://doi.org/10.3390/medsci6020033
Khan, R., Jori, C., Ansari, M.M., Ahmad, A., Nadeem, A., Siddiqui, N., Sultana, S. (2023). α-Terpineol mitigates dextran sulfate sodium-induced colitis in rats by attenuating inflammation and apoptosis. ACS Omega, 8(32):29794-2980. https://doi.org/10.1021/acsomega.3c04317
Kinali, B., Özdemir, N., Karadağ, A., Korkmaz, Ö.K., Diniz, A.G., Arslan, F.D. (2024). Effect of humic acid on oxidative stress and neuroprotection in traumatic spinal cord injury: an experimental study. Turkish Journal of Medical Sciences, 54(1):7.
Le Berre, C., Honap, S., Peyrin-Biroulet, L. (2023). Ulcerative colitis. Lancet, 402:571-584. https://doi.org/10.1016/S0140-6736(23)00496-7
Lee, C.H., Koh, S.J., Radi, Z.A., Habtezion, A. (2023). Animal models of inflammatory bowel disease: novel experiments for revealing pathogenesis of colitis, fibrosis, and colitis-associated colon cancer. Intestinal Research, 21(3):295–305.
Li, Z., Wang, L., Ren, Y., et al. (2022). Arginase: shedding light on the mechanisms and opportunities in cardiovascular diseases. Cell Death Discovery, 8:413. https://doi.org/10.1038/s41420-022-01200-4
Li, Z.Y., Lin, L.H., Liang, H.J., Li, Y.Q., Zhao, F.Q., Sun, T.Y., Zhai, H.H. (2023). Lycium barbarum polysaccharide alleviates DSS-induced ulcerative colitis by ameliorating epithelial barrier dysfunction and inflammation. Annals of medicine, 14(7):3355–3365.doi: 10.1080/07853890.2023.2290213.
Lin, W., Chen, H., Chen, X., Guo, C. (2024). The roles of neutrophil-derived myeloperoxidase (MPO) in diseases: The new progress. Antioxidants, 13(1):132. https://doi.org/10.3390/antiox13010132
López-Cauce, B., Urquía, A., Menchén, L., Homma, K., Bolás-Fernández, F., García-Rodriguez, J.J., Puerto, M. (2022). Lentinula edodes extract increases goblet cell number and MUC2 expression in an intestinal inflammatory model of Trichinella spiralis infection. Biomedicine & Pharmacotherapy, 150:112937. https://doi.org/10.1016/j.biopha.2022.112937
Marcinčák, S., Semjon, B., Marcinčáková, D., Reitznerová, A., Mudroňová, D., Vašková, J., et al. (2023). Humic substances as a feed supplement and the benefits of produced chicken meat. Life, 13(4):927. https://doi.org/10.3390/life13040927
Martí, I., Líndez, A., Reith, W. (2021). Arginine-dependent immune responses. Cellular and Molecular Life Sciences, 78(13):5303–5324. https://doi.org/10.1007/s00018-021-03828-4
M'Koma, A.E. (2013). Inflammatory bowel disease: an expanding global health problem:Clinical Medicine Insights. Gastroenterology, 6:33–47. doi:10.4137/CGast.S12731
Nehmi-Filho, V., Alves de Freitas, J., Franco, L.A.M., Fonseca, J.V., Martins, R.C.R., Santamarina, A.B., Murata, G.M., Sabino, E.C., Souza, E., Ferreira, M.T., Otoch, J.P., Pessoa, A.F.M. (2023). Novel nutraceutical (silymarin, yeast β-glucan, prebiotics, and minerals) shifts gut microbiota and restores large intestine histology of diet-induced metabolic syndrome mice. Journal of Functional Foods, 107:105671. https://doi.org/10.1016/j.jff.2023.105671
Omolaso, B.O., Ogunmiluyi, O.E., Adeniran, A.G. et al. (2024). The modulatory influence of humic acid on cognitive impairment and neurobehavioral changes induced by colitis in adult male Wistar rats. Nutrire, 49:46. https://doi.org/10.1186/s41110-024-00286-3
Owen, K., Abshire, M., Tilghman, R., Casanova, J., Bouton, A. (2011). FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One, 6. https://doi.org/10.1371/journal.pone.0023123
Perler, B.K., Ungaro, R., Baird, G., Mallette, M., Bright, R., Shah, S., Shapiro, J., Sands, B.E. (2019). Presenting symptoms in inflammatory bowel disease: descriptive analysis of a community-based inception cohort. BMC Gastroenterology, 19(1):47. https://doi.org/10.1186/s128
Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H., Gonzalez-Granado, J.M. (2023). Pathophysiology of inflammatory bowel disease: innate immune system. International Journal of Molecular Sciences, 24(2):1526. https://doi.org/10.3390/ijms24021526
Sakai, S., Nishida, A., Ohno, M., Inatomi, O., Bamba, S., Sugimoto, M., Kawahara, M., Andoh, A. (2019). Astaxanthin, a xanthophyll carotenoid, prevents development of dextran sulphate sodium-induced murine colitis. Journal of Clinical Biochemistry and nutrition, (64): 66-72. DOI:10.3164/jcbn.18-47
Saleh, A.A., Yassin, M., El-Naggar, K., Alzawqari, M.H., Albogami, S., Soliman, M.M., et al. (2022). Effect of dietary supplementation of humic acid and lincomycin on growth performance, nutrient digestibility, blood biochemistry, and gut morphology in broilers under clostridium infection. Journal of Applied Animal Research, 50(1):440–452. https://doi.org/10.1080/09712119.2022.2089674
Şehitoğlu, H., Oztopuz, O., Karaboga, I., Ovali, M.A., Uzun, M. (2022). Humic acid has protective effect on gastric ulcer by alleviating inflammation in rats. Cytology and Genetics,56:84-97 https://doi.org/10.3103/S0095452722010091
Souza, R.F., Caetano, M.A.F., Magalhães, H.I.R., Castelucci, P. (2023). Study of tumor necrosis factor receptor in the inflammatory bowel disease. World Journal of Gastroenterology, 29(18):2733-2746. https://doi.org/10.3748/wjg.v29.i18.2733
Tie, S., Chen, Y., Tan, M. (2024). An evaluation of animal models for using bioactive compounds in the treatment of inflammatory bowel disease. Food Frontiers, 5:474–493. https://doi.org/10.1002/fft2.360
Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L., Colombel, J.F. (2017). Ulcerative colitis. Lancet, 389(10080):1756-1770. https://doi.org/10.1016/S0140-6736(16)32126-2
Waltz, P., Escobar, D., Botero, A.M., Zuckerbraun, B.S. (2015). Nitrate/Nitrite as critical mediators to limit oxidative injury and inflammation. Antioxidants and Redox Signaling, 23(4):328-339. https://doi.org/10.1089/ars.2015.6256
Xu, D., Xie, Y., Cheng, J., He, D., Liu, J., Fu, S., Hu, G. (2024). Amygdalin alleviates DSS-induced colitis by restricting cell death and inflammatory response, maintaining the intestinal barrier, and modulating intestinal flora. Cells, 13(5):444. https://doi.org/10.3390/cells13050444
Xuan, H., Ou, A., Hao, S., Shi, J., Jin, X. (2020). Galangin protects against symptoms of dextran sodium sulfate-induced acute colitis by activating autophagy and modulating the gut microbiota. Nutrients, 12(2):347. https://doi.org/10.3390/nu12020347
Yao, D., Dai, W., Dong, M., Dai, C., Wu, S. (2021). MUC2 and related bacterial factors: therapeutic targets for ulcerative colitis. EBioMedicine, 74:103751. https://doi.org/10.1016/j.ebiom.2021.103751
Additional Files
Published
Data Availability Statement
All data supporting the findings of this study are available within the paper.
Issue
Section
Categories
License
Copyright (c) 2025 Blessing O. Omolaso, Adeoti G. Adeniran, Oluwafunmbi E. Ogunmiluyi, Julius K. Adesanwo, Adetutu Akinwuni, Kehinde Ewonowo, Oluwatomiwa Akinsola, Abosede T. Olorunnusi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.