Bioassay Guided Evaluation and Characterization of Solanum macrocarpon Fruits and Leaf Fractions via In Vitro Antiglycation, Radical Scavenging and Molecular Docking Analyses

Authors

  • Hauwa S. Usman Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Umar A. Umar Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Funmilola Audu Department of Biochemistry, University of Abuja, FCT, Nigeria Author
  • Mukhtar A. Suleiman Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author
  • Aishat Yakubu Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author https://orcid.org/0009-0001-1124-1059
  • Abdullahi B. Sallau Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v40i1.6

Keywords:

Antiglycation , Radical Scavenging, GC-MS, Molecular Docking, Solanum macrocarpon

Abstract

Plants, both in their natural state and as extracts/fractions, have provided significant benefits to human health for centuries. The pharmacological benefits of these plants is attributed to the diversity of primary and secondary metabolites. This study evaluated the in vitro DPPH scavenging capacity, antiglycation activity and bioactive constituents of Solanum macrocarpon fruit and leaf fractions using Chromatographic, Spectrophotometric, Spectro-fluorescence, Spectrometry assays and Molecular docking methods. Results revealed that ethylacetate fruit fraction exhibited the highest activity overall, regarding both radical scavenging and antiglycation activities. Such potent dual bioactivity can be ascribed to the presence of some prominent compounds identified from GC-MS analysis, which includes tetradecanoic acid, n-hexadecanoic acid and cycloeicosane. Molecular docking studies highlighted five compounds (methoxyacetic acid, 3-pentadecyl ester; tetradecanoic acid, n-hexadecanoic acid, cycloeicosane- and 3-eicosene, (E)-) having a pronounced affinity with bovine serum albumin (BSA), indicating their potential to impede binding of AGEs to BSA. Findings from this study encourages further investigations on other biological activities of this plant besides its antioxidant and antiglycation activity.

Downloads

Download data is not yet available.

References

Adam, O.A.O., A. Abadi, R.S.M. and Ayoub, S.M.H. (2019). Effect of extraction method and solvents on yield and antioxidant activity of certain Sudanese medicinal plant extracts. The Journal of Phytopharmacology, 8: 248-252.

Adebayo-Tayo, B. C., Briggs-Kamara, A. I., and Salaam, A. M. (2021). Phytochemical composition, antioxidant, antimicrobial potential and GC-MS analysis of crude and partitioned fractions of Nigella sativa seed extract. Acta Microbiologica Bulgarica, 37: 34-45.

Ahmed, N. (2005) Advanced glycation end products: role in pathology of diabetic complications. Diabetes Research and Clinical Practice. 67: 3–21.

Al-Bahadily, D.C.H., Shari, F.H., Najm, M.A.A. and Al-Salman, H.N.K. (2019). Antimicrobial activity of the compound 2-Piperidinone, N-[4-Bromo-n-butyl]-extracted from pomegranate peels. Asian Journal of Pharmaceutics, 13(1): 46: 76-78.

Al-Musayeib, N., Perveen, S., Fatima, I., Nasir, M., and Hussain, A. (2011). Antioxidant, anti-glycation and anti-inflammatory activities of phenolic constituents from Cordia sinensis. Molecules, 16(12): 10214-10226.

Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., Koke, M. and Hage, D. S. (2013). Glycation of human serum albumin. Clinica Chimica Acta, 425: 64-76.

Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., and Haridas, M. (2012). Anti‐inflammatory property of n‐hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology and Drug Design, 80(3): 434-439.

Banakar, P. and Jayaraj, M. (2018). GC-MS analysis of bioactive compounds from ethanolic leaf extract of Waltheria indica Linn. and their pharmacological activities. International Journal of Pharmaceutical Sciences and Research, 9(5): 2005-10.

Bello, S. O., Muhammad, B. Y., Gammaniel, K. S., Abdu-Aguye, I., Ahmed, H., Njoku, C. H., Pindiga, U.H. and Salka, A. M. (2005). Preliminary evaluation of the toxicity and some pharmacological properties of the aqueous crude extract of Solanum melongena. Research Journal of Agriculture and Biological Sciences, 1(1):1-9.

Choi, D., Kang, W., and Park, T. (2020). Anti-allergic and anti-inflammatory effects of undecane on mast cells and keratinocytes. Molecules, 25(7): 1554.

Dehpour, A. A., Yousefian, M., Jafary Kelarijani, S. A., Koshmoo, M., Mirzanegad, S., Mahdavi, V. and Javad Bayani, M. J. (2012). Antibacterial activity and composition of essential oils of flower Allium rotundum. Advances in Environmental Biology, 6(3): 1020-1025.

Duke, J. A. and Bogenschutz, M.J. (1994). Dr. Duke's phytochemical and ethnobotanical databases. Washington, DC: USDA, Agricultural Research Service: 1706410.

Elosta, A., Ghous, T. and Ahmed, N. (2012) Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Current Diabetes Reviews, 8: 92–108.

Elosta, A., Slevin, M., Rahman, K., and Ahmed, N. (2017). Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro. Scientific Reports, 7(1): 39613

Ganesan, T., Subban, M., Christopher Leslee, D. B., Kuppannan, S. B., and Seedevi, P. (2022). Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Conversion and Biorefinery, 14(13):1-12.

Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., and Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1): 32-36.

Juárez-Rodríguez, M. M., Cortes-López, H., García-Contreras, R., González-Pedrajo, B., Díaz-Guerrero, M., Martínez-Vázquez, M., Rivera-Chávez, J.A., Soto-Hernández, R.M. and Castillo-Juárez, I. (2021). Tetradecanoic acids with anti-virulence properties increase the pathogenicity of Pseudomonas aeruginosa in a murine cutaneous infection model. Frontiers in Cellular and Infection Microbiology, 10:597517.

Kaewnarin, K., Niamsup, H., Shank, L., and Rakariyatham, N. (2014). Antioxidant and antiglycation activities of some edible and medicinal plants. Chiang Mai Journal of Science, 41(1):105-116.

Komlaga, G., Sam, G. H., Dickson, R. A., Mensah, M. L. K., and Fleischer, T. C. (2014). Pharmacognostic studies and antioxidant properties of the leaves of Solanum macrocarpon. Journal of Pharmaceutical Sciences and Research, 6(1): 1.

Kregel, K.C. and Zhang, H.J. (2006). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological consideration. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1):18-36.

Kumar, R. S., Shakambari, G., Ashokkumar, B. and Varalakshmi, P. (2019). Inhibition of advanced glycation end products formation and inflammation in C. elegans: Studies of potential of Lyngbya sp. against expression of stress related genes and live cell imaging. Biocatalysis and Agricultural Biotechnology, 17: 233-241.

Lee, E. H., Song, D. G., Lee, J. Y., Pan, C. H., Um, B. H., and Jung, S. H. (2008). Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological and Pharmaceutical Bulletin, 31(8): 1626-1630.

Majeed, H., Bokhari, T. Z., Sherwani, S. K., Younis, U., Shah, M. H. R. and Khaliq, B. (2013). An overview of biological, phytochemical, and pharmacological values of Abies pindrow. Journal of Pharmacognosy and Phytochemistry, 2(3):182-187.

Matsuura, N., Aradate, T., Sasaki, C., Kojima, H., Ohara, M., Hasegawa, J., and Ubukata, M. (2002). Screening system for the Maillard reaction inhibitor from natural product extracts. Journal of Health Science, 48(6): 520-526.

Messiaen, C.M. (1992). The Tropical Vegetable Garden, 4th Ed. Macmillan Press Limited, London and Basingstoke: pp 232- 233.

Mocan, A., Zengin, G., Uysal, A., Gunes, E., Mollica, A., Degirmenci, N. S., Alpsoy, L. and Aktumsek, A. (2016). Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. Journal of Functional Foods, 25: 94-109.

Oboh, G., Ekperigin, M. M., and Kazeem, M. I. (2005). Nutritional and haemolytic properties of eggplants (Solanum macrocarpon) leaves. Journal of Food Composition and Analysis, 18(2-3) 153-160.

Oladimeji, O. H., Onu, N. O., and Attih, E. E. (2017). Ethyl linalool and diethyl phthalate from Pycnanthus angolensis (Welw.) Warb. African Journal of Pharmacology and Therapeutics, 6(2): 83-87.

Olusola, A. O., OlabodeOgunsina, I., Samson Ayedogbon, O. and Olusola Adesayo, O. (2020). In vivo antimalarial activity of bark extracts of Lannea acida (Anacardiaceae) and chloroquine against Plasmodium berghei in mice. International Journal of Biomedical and Clinical Sciences, 5(3): 229-35.

Osei, M. K., Banful, B., Osei, C. K., and Oluoch, M. O. (2010). Characterization of African eggplant for morphological characteristics. Nong Ye Ke Xue Yu Ji Shu (Journal of Agricultural Science and Technology), 4(3): 33.

Othman, A. R., Abdullah, N., Ahmad, S., Ismail, I. S., and Zakaria, M. P. (2015). Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root. BMC Complementary and Alternative Medicine, 15: 1-10.

Ouamnina, A., Alahyane, A., Elateri, I., Ouhammou, M., and

Abderrazik, M. (2024). In vitro and molecular docking studies of antiglycation potential of phenolic compounds in date palm (Phoenix dactylifera L.) Fruit: Exploring local varieties in the food industry. Horticulturae, 10(6): 657.

Pawlukianiec, C., Lauko, K. K., Michalak, D., Żendzian-Piotrowska, M., Zalewska, A., and Maciejczyk, M. (2025). A comparative study on the antioxidant and antiglycation properties of different vitamin D forms. European Journal of Medicinal Chemistry, 285: 117263.

Premaranthne, R.M.D.E., Marapana, R.A.U.J., and Perera, P.R.D. (2021). Determination of physiochemical characteristics and antioxidant properties of selected climacteric and non-climacteric fruits. Journal of Pharmacognosy and Phytochemistry, 10 (3): 23–28.

Purnamasari, V., Estiasih, T., Sujuti, H., and Widjanarko, S. B. (2021). Identification of phenolic acids of Pandan anggur (Sararanga sinuosa Hemsley) fruits and their potential antiglycation through molecular docking study. Journal of Applied Pharmaceutical Science, 11(2): 126-134.

Rahman, M. M., Islam, M. B., Biswas, M., and Khurshid Alam, A. H. M. (2015). In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes, 8: 1-9.

Rajbir Kaur, R. K., Saroj Arora, S. A., and Bikram Singh, B. S. (2008). Antioxidant activity of the phenol rich fractions of leaves of Chukrasia tabularis A. Juss. Bioresource Technology, 99(16):7692–7698.

Saad, A. S., Sergany, M. I., Mostafa, M. E., and Fathy, D. M. (2019). Efficacy of some entomopathogenic fungal extracts and their chemical constituents as alternative bio-pesticides against onion thrips, Thrips tabaci L. Journal of Plant Protection and Pathology, 10(2): 121-126.

Sasidharan, S., Chen, Y., Saravanan, D., Sundram, K. M., and Latha, L. Y. (2011). Extraction, isolation and characterization of bioactive compounds from plant extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1): 1-10

Shah, N. A., Khan, M. R., Ahmad, B., Noureen, F., Rashid, U. and Khan, R. A. (2013). Investigation on flavonoid composition and anti-free radical potential of Sida cordata. BMC Complementary and Alternative Medicine, 13(1): 1-12.

Additional Files

Published

2025-10-31

Data Availability Statement

Our research data has been made available in the Results Section of the Main Manuscript document attached.

How to Cite

Bioassay Guided Evaluation and Characterization of Solanum macrocarpon Fruits and Leaf Fractions via In Vitro Antiglycation, Radical Scavenging and Molecular Docking Analyses. (2025). Nigerian Journal of Biochemistry and Molecular Biology, 40(1), 40-47. https://doi.org/10.4314/njbmb.v40i1.6

Most read articles by the same author(s)