Production of Ethanol from Agricultural and Wood Wastes Degraded by Cellulases of Trichoderma harzianum
Abstract
The potentials of Trichoderma harzianum in the hydrolysis of agricultural and wood residues as natural lignocellulosic materials; for the production of ethanol were studied. Corn cob, groundnut shell and sawdust were used as cellulosic waste materials to induce the production of cellulases by T. harzianum. The enzyme produced was precipitated using Ammonium sulphate, characterized and used to hydrolyse alkali pre-treated cellulosic wastes. The product of hydrolysis was fermented to ethanol using the yeast Saccharomyces cerevisae. Among the three cellulosic waste materials tested, the endoglucanase and exoglucanase activity of 0.1494±0.0056 and 0.0820±0.0013 respectively, obtained in culture medium containing corn cob were significantly high (p < 0.05), when compared to those of groundnut shell (0.0532±0.0024 and 0.0229±0.0006) and sawdust (0.0235±0.0038 and 0.0117±0.0002). The optimum condition for the activity of the enzyme was 50oC and pH 5.0. Hydrolysis of corn cob with the cellulase yielded 2.83 mg ml-1 of sugar which produced 1.04% v/v ethanol on fermentation. Comparatively, the sugar yield from hydrolysis of groundnut shell and sawdust was too low for use in fermentation to ethanol. Although cellulases of T. harzianum degraded the three lignocellulosic waste materials to sugar, highest yield was obtained with corn cob. Consequently, corn cob was established as the most viable feedstock in the production of ethanol using the yeast S. cerevisae
Downloads
References
Acharya, P. B., Acharya, D. K. and Modi, H. A. (2008). Optimization for cellulase production by Aspergillus niger using sawdust as substrate. African Journal of Biotechnology 7(22): 4147 – 4152.
Ahmed, S., Bashir, A., Saleem, H., Saadia, M. and Jamil, A. (2009). Production of cellulose-degrading enzymes from a filamentous fungus Trichoderma harzianum. Pakistan Journal of Botany, 41(3): 1411 – 1419.
Alam, M. Z., Mamun, A. A, Qudsieh, I. Y., Muyibi, S. A., Salleh, H. M. and Omar, N. M. (2009). Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochemical Engineering Journal. 46: 61–64
Benkun, Q., Risheng, Y. B., Ying, Y. and Yuan, C. (2007). Influence of different ratios of rice straw to wheat bran on production of cellulolytic enzymes by Trichoderma Viride Zy-01 In Solid State Fermentation. Electronic Journal of Environmental Agricultural and Food Chemistry 6(9): 2341-2349.
Busto, M. D., Perezmateos, M. and Ortega, N. (1996). Location, kinetics and stability of cellulases induced in trichoderma reesei cultures. Bioresource Technology 57(2): 187 – 192.
Cao, N. J., Krishnan, M. S., Du, J. X., Gong, C. S., Ho, N. W. Y., Chen, Z. D. and Tsao, G. T. (1996). Ethanol production from corn cob pretreated by ammonia steeping process using genetically engineered yeast. Biotechnology Letters 18(9): 1013-1018.
Chen, P.J., Wei, T.C., Chang, Y.T. and Lin L.P. (2004). Purification and characterization of carboxymethyl cellulase from Sinorhizobium fredii. Botanical Bulletin of Academia Sinica 45: 111 – 118.
Ghose, T. K. (1987). Measurement of Cellulase Activities. Pure and Applied Chemistry 59(2): 257-268.
Greene, N. (2004) Growing Energy: How Biofuels Can Help End America’s Oil Dependence (http://www.nrdc.org/air/energy/biofuels/contents.asp), Natural Resources Defense Council
Hankin, L. and Anagnostakis, S. (1977). Solid Media Containing Carboxyl Methyl Cellulose to detect CM cellulase activity of microorganisms. Journal of General Microbiology 98: 109 – 115.
Herr, D. (1979). Secretion of cellulase and 3-glucosidase by Trichoderma viride ITCC-1433 in submerged culture on different substrates. Biotechnology Bioengineering 21: 1361-1371.
Jaafaru, M. I. and Fagade, O. E. (2007). Cellulase Production and Enzymatic Hydrolysis of Some Selected Local Lignocellulosic Substrates by a strain of Aspergillus niger. Research Journal of Biological Science 2(1): 13 – 16.
Kocher G., Kalra K. and Banta G. (2008). Optimization of cellulase production by submerged fermentation of rice straw by Trichoderma harzianum Rut-C 8230. Internet Journal of Microbiology p. 5.
Kolar, H., Mischak, H., Kammeli, W. P. and Kubicek, C. P. ((1989). Carboxy methyl cellulase and β-Glucosidase Secretion by Protoplasts of
Trichoderma reesei. Journal of General Microbiology 131: 1339-1 347.
Lawford, H. G. and Rousseau, J. D. (2003). Cellulosic Fuel Ethanol. Applied Biochemistry and Biotechnology 105–108, 457 – 469.
Liming, X. and Xueliang, S. (2004). High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresource Technology 91(3): 259-262
Lin, Y. and Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69: 627-642.
Liu, K., Lin, X., Yue, J., Li, X., Fang, X., Zhu, M., Lin, J., Qu, Y. and Xiao, L. (2010). High concentration ethanol production from corncob residues by fed-batch strategy. Bioresource Technology 101(13): 4952-8.
Macris, B. J. (1984). Production and Characterization of Cellulase and β – glucosidase from a mutant of Alternaria alternata. Applied and Environmental Microbiology 47(3): 560 – 565.
Mandels, M., Andreotti, R. and Roche, C. (1976). Measurement of Saccharifying Cellulase. Biotechnology and Bioengineering Symposium 6: 21 -33.
Mandels, M., L. Hontz, and J. Nystrom. (1974). Enzymatic hydrolysis of waste cellulose. Biotechnol. Bioeng. 16:1471- 1493.
Miettinen-Oinonen, A. and Suominen, P. (2002). Enhanced Production of Trichoderma reesei Endoglucanases and Use of the New Cellulase Preparations in Producing the Stonewashed Effect on Denim Fabric. Applied and Environmental Microbiology 68(8): 3956-3964.
Miller, G. L. (1959). Use of dinitrosalicylic acid for the determination of reducing sugar. Analytical Chemistry 31: 426 – 428.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulose biomass. Bioresource Technology 96: 673–686.
Ojumu, T. V., Solomon, B. O., Betiku, E., Layokun, S. K., and Amigun, B. (2003). Cellulase Production by Aspergillus flavus Linn Isolate NSPR 101 fermented in sawdust, bagasse and corncob. African Journal of Biotechnology 2(6): 150–152.
Omojasola, P. F. and Jilani, O. P. (2008). Cellulase Production by Trichoderma longii. Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange. Pakistan Journal of Biological Sciences 11(20): 2382 – 2388.
Omojasola, P. F., Jilani, O. P. and Ibiyemi, S. A. (2008). Cellulase production by some Fungi Cultured on Pineapple Waste. Nature and Science 6(2): 64-79.
Punnapayak, H., Kuhirun, M. and Thanonkeo, P. (1999). Cellulolytic fungi and the Bioconversion of Fiber from Agave sisalana. ScienceAsia 25: 133-136.
Saddler, J. N., Hogan, C. M. and Louis-Seize, G. (1985). A comparison between the cellulase systems of Trichoderma harzianum E58 and Trichoderma reesei C30. Applied Microbiology and Biotechnology 22(2): 139-145.
Saliu, B. K. and Sani, A. (2012) Bioethanol potentials of corn cob hydrolysed using cellulases of Aspergillus niger and Penicillium decumbens. EXCLI Journal 11: 468 - 479
Seidl V., Gamauf C., Druzhinina I.S., Seiboth B., Hartl L., Kubicek C.P. (2008). The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9: 327.
Singhania, R. R., Sukumaran, R. K. and Pandey A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Applied Biochemistry and Biotechnology 142(1): 60-70.
Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnol. Bioeng. Symp. 6:33-35.
Sun, Y. and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83: 1–11
Umamaheswari, M., Jayakumari, M., Maheswari, K., Subashree, M., Mala, P., Sevanthi, T., and Manikandan, T. (2010). Bioethanol Production From Cellulosic Materials. International Journal of Current Research 1: 005-011.
Vyas, A., Vyas, D. and Vyas, K. M. (2005). Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49. Journal of Scientific and Industrial Research 64: 281-286.
Zakpaa, H. D., Mak-Mensah, E. E. and Johnson, F. S. (2009). Production of bio-ethanol from corncobs using Aspergillus niger and Saccharomyces cerevisae in simultaneous saccharification and fermentation African Journal of Biotechnology 8(13): 3018-3022.
Zych, D. (2008). The viability of corn cobs as a bioenergy feedstock. http://renewables.morris.umn.edu/biomass/documents/ZychTheViabilityOfCornCobsAsABioenergyFeedstock.pdf
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2023 Saliu, B. K., Sani, A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.