Detection and Identification of Pathogenic Trypanosomes across Niger Republic–Nigeria Border by Polymerase Chain Reaction: A Case Study at Maigatari International Livestock Market, Northern Nigeria

Authors

  • Nura I. Sabiu Department of Biochemistry, Federal University Dutse, Dutse, Nigeria Author https://orcid.org/0009-0009-0008-0366
  • Nafisatu Kabir Department of Biochemistry, Federal University Dutse, Dutse, Nigeria Author https://orcid.org/0009-0007-5902-5850
  • Idris B. Machina Biotechnology Research Laboratory Unit, Nigerian Institute for Trypanosomiasis Research (NITR), Kaduna, Nigeria Author https://orcid.org/0000-0003-0687-5476
  • Aminu B. Yusuf Biotechnology Research Laboratory Unit, Nigerian Institute for Trypanosomiasis Research (NITR), Kaduna, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v39i3.3

Keywords:

Animal Trypanosomiasis, Trypanosomes, PCR, Trans-border Trade

Abstract

Trans-border trade among African countries has been a major route for transfer of goods and animals for centuries influencing socio-economic dynamics of regions and countries. Animal trading across borders has been implicated in the spread of several diseases and constitute a major risk to public health.The present study is aimed to investigate the role of livestock trade across Niger Republic-Nigeria border on the spread of animal African trypanosomiasis (AAT) using Maigatari International Livestock market in Northern Nigeria as a case study.To achieve this, blood samples were collected from 200 animals comprising 40 each of horses, donkeys, goats, camels and cattle brought for trading. Each sample was analysed for the presence of trypanosome spp by polymerase chain reaction using ITS1 CF and BR generic primers.The results showed an overall prevalence of 60% trypanosomes infection, with 16/40 (40%) for horse, 20/40 (50%) for donkey, 36/40 (90%) for goat, 36/40 (90%) for camel and 12/40 (30%) for cattle, respectively.The ITS1 CF and BR primers gave band sizes of 250 bp, 480 bp and above 580 bp for T. vivax, subgenus trypanozoon and T. congolense, respectively. The most prevalent trypanosome species detected were T. vivax single infection (86.7%), T. vivax/subgenus trypanozoon mixed infection (10%) and T. congolense/subgenus trypanozoon mixed infection (3.3%). These results confirmed the threat to public health pose by animal trade across Niger Republic-Nigeria border and call for strategic measures for the control and management of the spread of animal African trypanosomiasis especially as the disease is zoonotic in nature.

Downloads

Download data is not yet available.

References

Abenga, J., Enwezor, F., Lawani, F., Osue, H. and Ikemereh, E. (2004). Trypanosome prevalence in cattle in Lere area in Kaduna State, North central Nigeria. Revue d’elevage et de Medecine Veterinaire des Pays Tropicaux, 57(1-2), 45-48.

Adams, E. and Hamilton, P. (2008). New molecular tools for the identification of trypanosome species. Future Microbilogy, 3 (2), 167-176, 2008.

Ahmed, S. K., Rahman, A. H., Hassan, M. A., Salih, S. E. M., Paone, M. and Cecchi, G. (2016). An atlas of tsetse and bovine trypanosomosis in Sudan. Parasites & vectors, 9(1), 1-8. Anene, B., Onah, D. and Nawa, Y. (2001).

Drug resistance in pathogenic African trypanosomes: what hopes for the future? Veterinary Parasitology, 96(2), 83-100.

Allsopp, R. (2001). Options for vector control against trypanosomiasis in Africa. Trends in parasitology, 17(1), 15-19.

Bouyer, J., Bouyer, F., Donadeu, M., Rowan, T. and Napier, G. (2013). Community-and farmer-based management of animal African trypanosomosis in cattle. Trends in parasitology, 29(11), 519-522.

Clausen, P. H., Wiemann, A., Patzelt, R., Kakaire, D., Poetzsch, C., Peregrine, A. and Mehlitz, D. (1998). Use of a PCR Assay for the Specific and Sensitive Detection of Trypanosoma Spp. in Naturally Infected Dairy Cattle in Peri‐urban Kampala, Uganda. Annals of the New York Academy of Sciences, 849(1), 21-31.

Croft, S. L., Kuzoe, F. A., Ryan, L. and Molyneux, D. H. (1984). Trypanosome infection rates of Glossina spp. (Diptera: Glossinidae) in transitional forest-savanna near Bouaflé, Ivory Coast. Tropical Medicine and Parasitology, 35(4), 247–50.

Dabo, T. and Maigari, K. (2018). Prevelence of Trypanosmes in Trade Bus Indicus (Cattle) at Kano, Nigria. FUDMA Journal of Science-ISSN: 2616-1370, 2(2), 184-191.

Desquesnes, M., McLaughlin, G., Zoungrana, A. and Dávila, A. M. (2001). Detection and identification of Trypanosoma of African livestock through a single PCR based on internal transcribed spacer 1 of rDNA. International journal for parasitology, 31(5-6), 610-614.

Enwezor, F., Samdi, S., Ijabor, O. and Abenga, J. (2012). The prevalence of bovine trypanosomes in parts of Benue state, north-central Nigeria. Journal of Vector Borne Diseases, 49(3), 188.

Fajinmi, A., Faleke, O., Magaji, A., Daneji, A., Gweba, M., Fajinmi, A., Faleke, O., Magaji, A., Daneji, A. and Gweba, M. (2011). Presence of trypanosome species and determination of anaemia in trade cattle at Sokoto abattoir, Nigeria. Res J Parasitol, 6(1), 31-42.

Habeeb, I. F., Chechet, G. D. and Kwaga, J. K. (2021). Molecular Identification and Prevalence of Animal African Trypanosomes Among Cattle Distributed within Jebba Axis of River Niger, Kwara State.

Isaac, C., Ohiolei, J., Ebhodaghe, F., Igbinosa, I. and Eze, A. (2017). Animal African Trypanosomiasis in Nigeria: a long way from elimination/eradication. Acta tropica, 176, 323-331.

Moloo, S. K., Sabwa, C. L. and Kabata, J. M. (1992). Vector competence of Glossina pallidipes and G. morsitans centralis for Trypanosoma vivax, T. congolense and T. b. brucei. Acta Tropica, 51(3-4), 271–280. doi: 10.1016/0001-706X (92)90045-Y.

Masiga, D. K., Smyth, A. J., Hayes, P., Bromidge, T. J. and Gibson, W. C. (1992). Sensitive detection of trypanosomes in tsetse flies by DNA amplification. International journal for parasitology, 22(7), 909-918.

Mossaad, E., Ismail, A. A., Ibrahim, A. M., Musinguzi, P., Angara, T. E., Xuan, X., Inoue, N. and Suganuma, K. (2020). Prevalence of different trypanosomes in livestock in Blue Nile and West Kordofan States, Sudan. Acta tropica, 203, 105302.

Njiru, Z., Constantine, C., Guya, S., Crowther, J., Kiragu, J., Thompson, R. and Dávila, A. (2005). The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitology Research, 95(3), 186-192.

Ohaeri, C. (2010). Prevalence of trypanosomiasis in ruminants in parts of Abia State, Nigeria. Journal of Animal and Veterinary Advances, 9(18), 2422-2426.

Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J. and Magez, S. (2018). Salivarian Trypanosomosis: A review of parasites involved; their global distribution and their interaction with the innate and adaptive mammalian host immune system. Frontiers of Immunology, 9, 2253-2260. doi: 10.3389/fimmu.2018.02253.

World Health Organization (2022). Human African Trypanosomiasis (Sleeping Sickness). Retrieved from: https://www.who.int/data/gho/data/themes/topics/human-african-trypanosomiasis

Yakubu, A. (2014) the Role of Cattle Trade in Maigatari Economy of Jigawa State Nigeria: 1960-2010. Unpublished M.A. Thesis, Department of History and International Relations, University of Nigeria, Nsukka.

Published

2024-09-30

Issue

Section

Research Articles

Categories

How to Cite

Detection and Identification of Pathogenic Trypanosomes across Niger Republic–Nigeria Border by Polymerase Chain Reaction: A Case Study at Maigatari International Livestock Market, Northern Nigeria. (2024). Nigerian Journal of Biochemistry and Molecular Biology, 39(3), 136-140. https://doi.org/10.4314/njbmb.v39i3.3

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.