Bioassay-Guided Fractionation and Identification of Anti-Inflammatory and Xanthine Oxidase Inhibitory Compounds of Zanthoxylum tessmannii Roots

Authors

  • Samuel O. Babarinde Department of Biochemistry, Adeleke University, Ede, Osun, Nigeria Author
  • Godwin Anyim Department of Biochemistry, Adeleke University, Ede, Osun, Nigeria Author
  • Adetoun E. Morakinyo Department of Biochemistry, Adeleke University, Ede, Osun, Nigeria Author
  • Samuel C. Nzekwe Department of Biochemistry, Adeleke University, Ede, Osun, Nigeria Author
  • Mosebolatan V. Adegbola Department of Science Laboratory Technology, Federal Polytechnic, Ede, Osun, Nigeria Author
  • Bolajoko A. Akinpelu Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria Author
  • Temitope A. Oyedepo Department of Biochemistry, Adeleke University, Ede, Osun, Nigeria Author

DOI:

https://doi.org/10.4314/njbmb.v39i4.5

Keywords:

Anti-inflammatory activity, Allergenicity, Ethnomedicinal, Zanthoxylum tessmannii, Bioactivity compounds

Abstract

Several bioactive compounds identified in Zanthoxylum tessmannii have validated many traditional medicine applications of the plant. Studies have highlighted the anti-inflammatory properties of crude extracts of the plant and the allergenic properties of both extracts and fractions of the plant roots. This study aimed to identify the compounds responsible for these effects in Z. tessmannii roots. Using bioassay-guided fractionation, the aqueous extract was partitioned into n-hexane, dichloromethane, ethyl acetate, and butanol fractions, followed by partial purification of the most active fraction with silica gel chromatography.  Fractions and sub-fractions were tested for inhibition of protein denaturation, xanthine oxidase (XO), and lipoxygenase activities. The aqueous fraction (AF) showed significantly higher inhibition of protein denaturation (46.74±2.17%) compared to dichloromethane (35.05±1.51%) and butanol (34.78±1.09%) fractions at concentrations of 0.0015 mg/mL and 0.003 mg/mL. AF also demonstrated the highest inhibition of XO activity. Sub-fraction A, from the most active AF, showed 93.19±0.08% inhibition of lipoxygenase. GC-MS analysis of sub-fraction A identified compounds like E-15-Heptadecenal, 9-Octadecenoic acid (Z)-2,3-dihydroxy propyl, trans-13-Octadecenoic acid, Oleic acid, and Tetraacetate 1-Hexanethiol. The findings highlight that Z. tessmannii root possesses compounds with known anti-inflammatory effects and those indicating allergenic symptoms, suggesting both therapeutic potential and possible harmful effects.

Downloads

Download data is not yet available.

References

Aidoo, D. B., Konja, D., Henneh, I. T., & Ekor, M. (2021). Protective effect of bergapten against human erythrocyte hemolysis and protein denaturation in vitro. International Journal of Inflammation, 2021, 1-7. doi: https://doi.org/10.1155/2021/1279359

Aladdin, N., Husain, K., Jalil, J., Sabandar, C. W., & Jamal, J. A. (2020). Xanthine oxidase inhibitory activity of a new isocoumarin obtained from marantodes pumilum var. pumila leaves. BMC complementary Medicine and Therapies, 20(324), 1-12. doi: https://doi.org/10.1186/s12906-020-03119-8

Ashiq, K., Hussain, K., Islam, M., Shehzadi, N., Ali, E., & Ashiq, S. (2021). Medicinal plants of pakistan and their xanthine oxidase inhibition activity to treat gout: a systematic review. Turkish Journal of Botany, (45), 723-738. doi:10.3906/bot-2109-19

Awonyemi, I. O., Abegunde, M. S., & Olabiran, E. T. (2020). Analysis of bioactive compounds from raphia taedigera using gas chromatography–mass spectrometry. Eurasian Chemical Communications, 2, 938-944. doi:10.22034/ecc.2020.107898

Babarinde, S. O., Adekoya, E. S., Abdulwasiu, S., Akinpelu, B. A., & Oyedepo, T. A. (2021a). Membrane stabilising and xanthine oxidase inhibitory potentials of z. tessmannii root extracts on stressed bovine erythrocytes. Advances in Multidisciplinary and Scientific Research, 7(1), 67–74.

Babarinde, S. O., Akinpelu, B. A., & Oyedepo, T. A. (2021b). Evaluation of antiallergy potentials of Z. tessmannii root extracts via in vitro inhibition of stressed rat peritoneal mast cell degranulation. Advances in Multidisciplinary and Scientific Research, 7(2), 1-14. doi: dx.doi.org/10.22624/AIMS/V7N2P1

Bou-Salah, L., Benarous, K., Linani, A., Rabhi, F., Chaib, K., Chine, I., Bensaidane, H., & Yousfi, M. (2021). Anti-inflammatory drugs as new inhibitors to xanthine oxidase: in vitro and in silico approach. Molecular and Cellular Probes, 58(101733), 1-8.

Chansiw, N., Chotinantakul, K., & Srichairatanakool, S. (2019). Anti-inflammatory and antioxidant activities of the extracts from leaves and stems of polygonum odoratum Lour. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry, 18, 45-54. Doi:10.2174/1871523017666181109144548

Chansiw, N., Paradee, N., Chotinantakul, K., & Srichairattanakool, S. (2018). Anti-hemolytic, antibacterial and anti-cancer activities of methanolic extracts from leaves and stems of polygonum odoratum. Asian Pacific Journal of Tropical Biomedicine, 8(12), 580-585. doi:10.4103/2221-1691.248094

Concha, D. D. M, Martínez, J. E. B., Velázquez, T. G. G., Martínez, C. J., & Ruiz, J. C. R. (2022). Impact of germination time on protein solubility and anti-inflammatory properties of Pisum sativum L grains. Food Chemistry: X, 13(100219), 1-6.

Dhami, A., Singh, A., Palariya, D., Kumar, R., Prakash, O., Rawat, D., & Pant, A. K. (2019). α-Pinene rich bark essential oils of zanthoxylum armatum DC. from three different altitudes of Uttarakhand, India and their antioxidant, in vitro anti-inflammatory and antibacterial activity. Journal of Essential Oil-Bearing Plants, 1-16. doi:10.1080/0972060X.2019.1630015

Djeukeu, C. K., Kenmogne, A. K., Azebaze, A. G., Kedi, P. B., Vardamides, J. C., Sewald, N., & Wansi, J. D. (2019). A new aromatic amide from the roots of Zanthoxylum tessmannii (Rutaceae). Chemical Biodiversity, 16(1), 1-6. doi:10.1002/cbdv.201800590

Ganz, M., Alessandro, C., Jacobbs, M., Miller, D., Gejerman, Y., Okoye, F., Jamieson, F., & Winer, A. (2023). Investigating the anti-inflammatory effect of allopurinol on the prevention of prostate cancer. Cureus, 15(6), 1-5. Doi:10.7759/cureus.40058

Guo, R. H., Park, J. U., Jo, S. J., Ahn, J. H., Park, J. H., Yang, J. Y., Lee, S. S., Park, M. J., & Kim, Y. R. (2018). Anti-allergic inflammatory effects of the essential oil from fruits of Zanthoxylum coreanum Nakai. Frontiers in Pharmacology 9(1441), 1-13. doi: 10.3389/fphar.2018.01441

Khalid, M., Alqarni, M., Shoaib, A., Arif, M., Foudah, A., Afzal, O., Ali, A., Ali, A., Alqahtani, S., & Altamimi, A. (2021). Anti-arthritic and anti-inflammatory potential of Spondias mangifera Extract Fractions: an in silico, in vitro and in vivo approach. Plants, 10(825), 1-20. doi:10.3390/plants10050825

Konaté, K., Souza, A., Thérèse, K., Dibala, I., Barro, N., Raso-lodimby, J., & Nacoulma, O. (2011). Phytochemical composition, antioxidant and anti-inflammatory potential of bioactive fractions from extracts of three medicinal plants traditionally used to treat liver diseases in Burkina Faso. International Journal of Phytomedicine, 3, 406-415.

Kumari, C. S., Yasmin, N., Hussain, M. R., & Babuselvam, M. (2015). In vitro Anti-inflammatory and anti-arthritic property of Rhizopora Mucronata leaves. International Journal of Pharma Sciences and Research, 6(3), 482-485.

Liu, X., Xie, J., Jia, S., Huang, L., Wang, Z., Li, C., & Xie, M. (2017). Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. International journal of Biological Macromolecules, 98, 576–581. doi: 10.1016/j.ijbiomac.2017.02.028

Liu, Z-Q., Liu, Z-B., Sun, X., Zhang, L-L., & Wu, C-J. (2023). Integrating network pharmacology and molecular docking to explore the potential mechanism of Zanthoxylum bungeanum against gout. TMR Integrative Medicine, doi: 10.53388/TMRIM202307011

Mbaveng, A. T., Damen, F., Çelik, I., Tane, P., Kuete, V., & Efferth, T. (2019). Cytotoxicity of the crude extract and constituents of the bark of Fagara tessmannii towards multi-factorial drug resistant cancer cells. Journal of Ethnopharmacology, 235(1), 28–37. doi: https://doi.org/10.1016/j.jep.2019.01.031

Mbaze, L. M., Poumale, H. M., Wansi, J. D., Lado, J. A., Khan, S. N., Iqbal, M. C., Ngadjui, B.T., & Laatsch, H. (2007). Alpha-glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry, 68(1), 591–595.

Modi, C., Bhatt, P., Pandya, K., Patel, H., & Patel, U. (2019). Comparative evaluation of in vitro anti-inflammatory activity of different extracts of selected medicinal plants from Saurashtra region, Gujarat, India. International Journal of Current Microbiology and Applied Sciences, 8, 1686–1698.

NLM, National Library of Medicine. (2004, September 16). Compound summary: Oleic acid. Retrieved June 16, 2021, from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-acid

NLM, National Library of Medicine. (2005a, March 26). Compound summary: 1-Hexanethiol. Retrieved June 16, 2021, from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/1-Hexanethiol

NLM, National Library of Medicine. (2005b, March 26). Compound summary: 2,3-Dihydroxypropyl octadec-9-enoate. Retrieved June 16, 2021, from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/2_3-Dihydroxypropyl-octadec-9-enoate

NLM, National Library of Medicine. (2005c, March 27). Compound summary: Octadec-6-enoic acid. Retrieved June 16, 2021, from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/Octadec-6-enoic-acid

NLM, National Library of Medicine. (2005d, September 16). Compound summary: Trans -13-Octadecenoic acid. Retrieved June 16, 2021, from PubChem: https://pubchem.ncbi.nlm.nih.gov/compound/trans-13-Octadecenoic-acid

Okagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum species: A comprehensive review of traditional uses, phytochemistry, Pharmacological and nutraceutical applications. Molecules, 26(4023), 1-38. doi: https://doi.org/10.3390/molecules26134023

Olarenwaju, O., Apata, J. T., Akinpelu, B. A., Akomolafe, R. O., Oyemitan, I. A., Asaolu, F. T., Ologe, M. O.,& Iwalewa, E. O. (2018). Anti-inflammatory potentials, membrane stabilizing and xanthine oxidase inhibitory activities of Clerodendrum volibule ethanolic leaf extract on carragenaan-induced inflammation in rats. International Journal of Pharmacology and Toxicology, 6(1), 7-11. doi:10.14419/ijpt.v6i1.8410

Ombito, J. O. (2021). Phytochemistry and pharmacology of the genus Zanthoxylum (Rutaceae): A review. The Natural Products Journal, 11(1), 21-43. doi: https://doi.org/10.2174/2210315509666191202095924

Patel, S., & Zaveri, M. (2014). Trypsin and protein denaturation inhibitory activity of different fractionation and isolated compound of leaf and root of Justicia gendarussa. International Journal of Pharmaceutical Sciences and Research, 5(12), 5564-5571. doi:10.13040/IJPSR.0975-8232.5(12).5564-7

Pieczykolan, A., Pietrzak, W., Gawlik-Dziki, U., & Nowak, R. (2021). Antioxidant, antiinflammatory, and anti-diabetic activity of phenolic acids fractions obtained from Aerva lanata (L.) Juss. Molecules, 26(3484), 1-17. doi:10.3390/molecules26123486

Ranjana, Nooreen, Z., Bushra, U., Jyotshna, Bawankule, D. U., Shanker, K., Ahmad, A., & Tandon, S. (2019). Standardization and xanthine oxidase inhibitory potential of Zanthoxylum armatum fruits. Journal of Ethnopharmacology, 230, 1-8. doi: 10.1016/j.jep.2018.10.018

Rédei, D., Kúsz, N., Jedlinszki, N., Blazsó, G., Zupkó, I., & Hohmann, J. (2017). Bioactivity-guided investigation of the anti-inflammatory activity of Hippophae rhamnoides fruits. Planta Medica, 31(5), 986–1000. doi:10.1161/ATVBAHA.110.207449

Rotimi, S. O., Rotimi, O. A., & Obembe, O. O. (2014). In silico analysis of compounds characterized from ethanolic extract of Cucurbita pepo with NF-κB-inhibitory potential. Bangladesh Journal of Pharmacology, 9, 551-556.

Saleem, A., Saleem, M., & Akhtar, M. F. (2020). Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: An ethnomedicinal plant of Moringaceae family. South African Journal of Botany, 128(1), 246-256. doi: https://doi.org/10.1016/j.sajb.2019.11.023

Saravanan, S., Islam, V. I. H., David, H. A., Sundaram, R. L., Chellappandian, M., Balakrishna, K., Rajendran, R., Vijayaraghavan, P., Paulraj, M. G., & Ignacimuthu, S. (2015). Bioassay-guided fractionation and identification of active anti-inflammatory constituent from Delonix elata flowers using RAW 264.7 cells. Pharmaceutical Biology, 53(2), 174-184. doi:10.3109/13880209.2014.913067

Schlesinger, N., & Brunetti, L. (2019). Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Seminars in Arthritis and Rheumatism, 1-7. https://doi.org/10.1016/j.semarthrit.2019.11.009

Stojković, N., Cekić, S., Ristov, M., Ristić, M., Đukić, D., Binić, M., & Virijević, D. (2015). Histamine and antihistamines. Scientific Journal of the Faculty of Medicine, 32(1), 7-22. doi:10.1515/afmnai-2015-0001

Tankeo, S. B., Damen, F., Awouafack, M. D., Mpetga, J., Tane, P., Eloff, J. N., & Kuete, V. (2015). Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii. Journal of Ethnopharmacology, 169, 275–279. doi:10.1016/j.jep.2015.04.041

Tanoh, E. A., Nea, F., Kemene, T. K., Genva, M., Saive, M., Tonzibo, F. Z., & Fauconnier, M.-L. (2019). Antioxidant and lipoxygenase inhibitory activities of essential oils from endemic plants of Côte d’Ivoire: Zanthoxylum mezoneurispinosum Ake Assi and Zanthoxylum psammophilum Ake Assi. Molecules, 24(13), 1-15. doi:10.3390/molecules24132445

Tian, Y., Lin, L., Zhao, M., Peng, A., & Zhao, K. (2021). Xanthine oxidase inhibitory activity and anti-hyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides. Journal of Ethnopharmacology, 1-11. doi: https://doi.org/10.1016/j.jep.2021.113808

Published

2024-12-31

Issue

Section

Research Articles

Categories

How to Cite

Bioassay-Guided Fractionation and Identification of Anti-Inflammatory and Xanthine Oxidase Inhibitory Compounds of Zanthoxylum tessmannii Roots. (2024). Nigerian Journal of Biochemistry and Molecular Biology, 39(4), 225-233. https://doi.org/10.4314/njbmb.v39i4.5

Similar Articles

1-10 of 81

You may also start an advanced similarity search for this article.