Studies on Desmodium velutinum (Willd.) DC. Leaf Extract's Polyphenol Profile, in-vitro Antioxidant Capacity, and Anti-Proliferative Activity of A549 Cell Lines

Authors

  • Victor O. Makanjuola Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Bingham University, Karu, Nigeria Author
  • Saroj Arora Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India Author
  • Francis I.O. Duru Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos, Nigeria Author
  • Abraham A. A. Osinubi Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos, Nigeria Author

Keywords:

Desmodium velutinum, U-HPLC, Kaempferol, Reactive oxygen species

Abstract

In African and Asian ethnomedicinal studies, Desmodium velutinum (Willd) has been used in the treatment of tooth and head aches, diarrhoea, cancer, and haematuria and as repellent and aphrodisiac. The study is aimed at determining polyphenol profile and antioxidant activities of D. velutinum methanol leaf extract and its ethyl acetate and butanol fraction. The study also investigated the effect of this plant on lung adenocarcinoma (A549) cell line. The polyphenol constituents in D. velutinum were evaluated with the U-HPLC technique. While, the antioxidant activities of the methanol plant extract and its fractions were assessed with the DPPH, metal chelating, reducing power and DNA nicking assays. MTT assay was employed to analyse the effect of the plant on A549 cell line. Kaempferol is the principal polyphenol in the leaf extract/fraction of D. velutinum. Conversely, its ethyl acetate fraction possessed a higher concentration of catechin than kaempferol. Total phenolic content (TPC) result was directly proportional to the antioxidant activities of extract and fractions, a higher TPC value was obtained in ethyl-acetate fraction (787.1 ± 21.4 mg GAE/g) than the crude methanol extract (710.9 ± 24.5 mg GAE/g) and its n-butanol fraction (759.2 ± 1.3 mg GAE/g), thus, ethyl acetate fraction performed best in the antioxidant assays. D. velutinum also inhibited oxidative damage to supercoiled plasmid DNA and suppressed the proliferation of A549 cells in a dose-dependent manner. This study shows that D. velutinum does have potentials to protect against many diseases linked with reactive oxygen species.

Downloads

Download data is not yet available.

References

Abubakar, M. S., Musa, A. M., Ahmed, A. and Hussaini, I. M. (2007). The perception and practice of traditional medicine in the treatment of cancers and inflammations by the Hausa and Fulani tribes of Northern Nigeria. Journal of Ethnopharmacology, 111(3): 625–629. https://doi.org/10.1016/j.jep.2007.01.011

Ainsworth, E. A. and Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2(4): 875–877. https://doi.org/10.1038/nprot.2007.102

Akinola, J. and Afolayan, R. (1991). Effects of storage, testa colour and scarification method on seed germination of Desmodium velutinum (Willd.) DC. Seed Science and Technology, 19(1): 159–166.

Alam, F., Najum us Saqib, Q. and Waheed, A. (2017). Cytotoxic activity of extracts and crude saponins from Zanthoxylum armatum DC. against human breast (MCF-7, MDA-MB-468) and colorectal (Caco-2) cancer cell lines. BMC Complementary and Alternative Medicine, 17(1): 1–9. https://doi.org/10.1186/s12906-017-1882-1

Apak, R., Güçlü, K., Özyürek, M. and Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC Method. Journal of Agricultural and Food Chemistry, 52(26): 7970–7981. https://doi.org/10.1021/jf048741x

Azzwali, A. A. A. and Azab, A. E. (2019). Mechanisms of programmed cell death. Journal of Applied Biotechnology and Bioengineering, 6(4): 156-158.

BLOIS, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617): 1199–1200. https://doi.org/10.1038/1811199a0

Chowdhury, A., Pal, T. K., Alam, M. A., Rahaman, M. S. and Rashid, M. A. (2013). Antioxidant, antimicrobial and cytotoxic activities of Desmodium motorium merr. Journal of Scientific Research, 5(1): 201-205.

Deng, S., Yuan, H., Yi, J., Lu, Y., Wei, Q., Guo, C., Wu, J., Yuan, L. and He, Z. (2013). Gossypol acetic acid induces apoptosis in RAW264.7 cells via a caspase-dependent mitochondrial signaling pathway. Journal of Veterinary Science, 14(3): 281–289. https://doi.org/10.4142/jvs.2013.14.3.281

Dinis, T. C. P., Madeira, V. M. C. and Almeida, L. M. (1994). Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers. Archives of Biochemistry and Biophysics, 315(1): 161–169. https://doi.org/https://doi.org/10.1006/abbi.1994.1485

Eze-Steven, P. E., Udeozo, I. P., Emmanuel, O. and Farida, O. (2014). The effects of ethanol exract of Desmodium velutinum stem on liver markers of albino wistar rats fed with high fat diet. World Applied Science Journal, 31(10): 1684–1688. https://doi.org/10.5829/idosi.aejsr.2014.9.2.83170

Ezealigo, U. S., Joshua, P. E., Ononiwu, C. P., Agbo, M. O., Asomadu, R. O. and Ogugua, V. N. (2021). Total phenolic and flavonoid content and in vitro antioxidant activity of methanol extract and solvent fractions of Desmodium ramosissimum G. Don. Medical Science Forum, 2: 15. https://doi.org/10.3390/CAHD2020-08594

Ezike, A. C., Akah, P. A., Okoli, C. O., Ufere, I. K., Ezeudu, E., Okoye, C. F., Ashara, C. and Igbokwe, I. N. (2014). Studies on gastrointestinal effects of Desmodium velutinum: A traditional remedy for diarrhea. American Journal of Pharmacology and Toxicology, 9(2): 114–124. https://doi.org/10.3844/ajptsp.2014.114.124

Fischer, D., Li, Y., Ahlemeyer, B., Krieglstein, J. and Kissel, T. (2003). In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 24(7): 1121–1131. https://doi.org/https://doi.org/10.1016/S0142-9612(02)00445-3

Hang, M., Zhao, F., Chen, S., Sun, Q. and Zhang, C. (2015). Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition. Bangladesh Journal of Pharmacology, 10: 267–271.

Ibrahim, J. A., Muazzam, I., Jegede, I. A. and Kunle, O. F. (2010). Medicinal plants and animals sold by the “yan- shimfidas” of sabo wuse in Niger state, Nigeria. African Journal of Pharmacy and Pharmacology, 4(6): 386–394.

Isah, A. O., Agunu, A. and Danmalam, U. H. (2016). Evaluation of analgesic property of Desmodium velutinum (P.BEAUV.) DC (PAPILIONACEAE). European Journal of Botany, Plant Sciences and Phytology, 3(2): 30–34.

Jo, E., Park, S. J., Choi, Y. S., Jeon, W. K. and Kim, B.C. (2015). Kaempferol suppresses transforming growth factor-β1–induced epithelial-tomesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at threonine-179. Neoplasia, 17: 525–37.

Kanthale, P. R. and Biradar, S. D. (2012). Ethnomedicinal plants and their utilization by tribals of mahur range forest of nanded district of Maharashtra, India. Indian Journal of Natural Products and Resources, 3(4): 578–581.

Kaur, D., Kaur, A. and Arora, S. (2016). Delineation of attenuation of oxidative stress and mutagenic stress by Murraya exotica L. leaves. Springer Plus, 5: 1037. DOI: 10.1186/s40064-016-2709-0

Kaur, P., Robin, Mehta, R. G., Singh, B. and Arora, S. (2019). Development of aqueous-based multi-herbal combination using principal component analysis and its functional significance in HepG2 cells. BMC Complementary and Alternative Medicine, 19(1): 1–17. https://doi.org/10.1186/s12906-019-2432-9

Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S. A., Afridi, S. and Shinwari, Z. K. (2019). Anticancer plants: a review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules, 10: 47.

Lai, S. C., HO, Y. L., Huang, S. C., Huang, T. H., Lai, Z. R., Wu, C. R., Lian, K.Y. and Chang, Y. S. (2010) Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC. The American Journal of Chinese Medicine, 38(2): 329–342.

Lee, J.-C., Kim, H.-R., Kim, J. and Jang, Y.-S. (2002). Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. Saboten. Journal of Agricultural and Food Chemistry, 50(22): 6490–6496. https://doi.org/10.1021/jf020388c

Li, J., Song, Y., Yu, B. and Yu, Y. (2020). TNFAIP2 promotes non-small cell lung cancer cells and targeted by miR-145-5p. DNA and Cell Biology, 00 (00): 1–8. DOI: 10.1089/dna.2020.5415

Li, J., Zhong, X., Zhao, Y., Shen, J., Pilapong, C. and Xiao, Z. (2022). Polyphenols as lung cancer chemopreventive agents by targeting microRNAs. Molecules, 27: 5903. https://doi.org/10.3390/molecules27185903

Makanjuola, V. O., Robin, R., Kaur, P., Arora, S., Duru, F. I., Osinubi, A. A., Okoli, B., Kumar, A., Haque, S. and Tuli, H. S. (2023). Trema oreintalis (Linn) Blume stem bark: polyphenol profile, in-vitro antioxidant and anti-proliferative activites on the A549 cell line. Minerva Biotechnology and Biomolecular Research, 35(3):161-172.

Mojzer, E. V., Hrncic, M. K., Skerget, M., Kenez, Z. and Bren, U. (2016). Polyphenols: Extraction methods, antioxidative action, bioavailabilty and anticancer effects. Molecules, 21: 901; doi:10.3390/molecules21070901

Muanda, F. N., Bouayed, J., Djilani, A., Yao, C., Soulimani, R. and Dicko, A. (2011). Chemical composition and, cellular evaluation of the antioxidant activity of Desmodium adscendens leaves. Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine, 2011, Article ID 620862, doi:10.1155/2011/620862

Muller, A. G., Sarker, S. D., Saleem, I. Y. and Hutcheon, G. A. (2019). Delivery of natural phenolic compounds for the potential treatment of lung cancer. DARU Journal of Pharmaceutical Sciences, 27: 433–449

Mutha, R. E., Tatiya, A. U. and Surana, S. J. (2022). Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future Journal of Pharmaceutical Sciences, 7: 25

Okafor, J. N. C., Rautenbauch, F., Meyer, M., Le Roes-Hill, M., Harris, T. and Jideani, V. A. (2021). Phenolic content, antioxidant, cytotoxic and antiproliferative effects of fractions of Vigna subterraenea (L.) verdc from Mpumalanga, South Africa. Heliyon, 7: e08397 https://doi.org/10.1016/j.heliyon.2021.e08397

Olajuyin, A. M., Olajuyin , A. K., Wang, Z., Zhao, X. Xu, Z., Zhang, Q. and Zhang, X. (2021). Anti-proliferative, antioxidant effects of methanol extract of Calotropis procera leaf on lung cancer cells (H1299) and its ameliorative effect on expression of CD146 on blood cells. Clinical Phytoscience, 7: 51. https://doi.org/10.1186/s40816-021-00289-x

Olugbami, J.O., Gbadegesin, M.A. and Odunola, O.A. (2014). In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. African Journal of Medicine and Medical Sciences, 43(Suppl 1):101-109

Oyaizu, M. (1986). Studies on products of browning reactions: antioxidative activities of product of browning reaction prepared from glucosamine. Japan Journal of Nutrition, 44: 307–315.

Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269(2): 337–341.

Robin, Arora, S. and Vig, A. P. (2015). Inhibition of DNA oxidative damage and antimutagenic activity by dichloromethane extract of Brassica rapa var. rapa L. seeds. Industrial Crops and Products,74(2015):585–591.

Romero, M. C., Garro, O. A., Romero, A. M., Michaluk, A. G., Doval, M. M. and Judis, M. A. (2014). Assessment of the quality and shelf-life in enriched n3 PUFA raw beef patties using dry soybean sprouts as antioxidant. Food and Nutrition Sciences, 05(07): 658–670

Sajid, M., Yan, C., Li, D., Merugu, S. B., Negi, H. and Khan, M. R. (2019). Potent anti-cancer activity of Alnus nitida against lung cancer cells; in-vitro and in-vivo studies. Biomedicine and Pharmacotherapy, 110:254–264.

Sajna, K. V., Kamat, S. and Jayabaskaran, C. (2020). Antiproliferative role of secondary metabolites from Aspergillus unguis ag 1.1 (g) isolated from marine Macroalgae Enteromorpha sp. by inducing intracellular ROS production and mitochondrial membrane potential loss leading to apoptosis. Frontiers in Marine Science, 7: 543523. doi: 10.3389/fmars.2020.543523

Sorgho, H., Koog, C., Kazienga, A., Dabiré, K. R., Gouagna, C., Dakuyo, P. Z., Ouédraogo, J. B., Guissou, I. P., Guiguemdé, T. R., Bernard, U. C., Lyon, I., Pharmacie, F. De, & Faso, B. (2013). Antiplasmodial and repellent activity of indigenous plants used against malaria. Journal of Medicinal Plants Research, 7(42): 3105–3111. https://doi.org/10.5897/JMPR12.998

Thai, A. A., Solomon, B. J., Sequist, L. V., Gainor, J. F. and Heist, R. S. (2021). Seminar: Lung cancer. Lancet, 398: 535–54. https://doi.org/10.1016/ S0140-6736(21)00312-3

Tsai, J. C., Huang, G. J., Chiu, T. H., Huang, S. S., Huang, S. C., Huang, T. H., Lai, S. C. and Lee, C. Y. (2011). Antioxidant activities of phenolic components from various plants of Desmodium species. African Journal of Pharmacy and Pharmacology, 5(4): 468-476.

Vinjamuri, S., Shanker, D., Ramesh, R. and Nagarajan, S. (2015). In vitro evaluation of hemolytic activity and cell viability assay of hexanoic extracts of Bridelia ferruginea e. World Journal of Pharmacy and Pharmaceutical Sciences, 4(7): 1263–1268.

Wang, Z., Tu, Z., Xie, X., Cui, H., Kong, K.W. and Zhang, L. (2021). Perilla frutescens leaf extract and fractions: polyphenol composition, antioxidant, enzymes (α-glucosidase, acetylcholinesterase, and tyrosinase) inhibitory, anticancer, and antidiabetic activities. Foods, 10: 315. https://doi.org/10.3390/foods 10020315

Zhang, J., Shi, X., Meng, W., Ma, F., Zhao, L. and Zhao, J. (2018). Kaempferol inhibits invasion and migration of non-small cell lung cancer A549 cells by down regulating ERRα expression. Chinese Journal of Cancer Biotherapy, 6: 1230-1236.

Zhu, L., Yuan, H., Guo, C., Lu, Y., Deng, S., Yang, Y., Wei, Q., Wen, L. and He, Z. (2012). Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent mitochondrial signaling pathway. Journal of Cellular Physiology, 227(5): 1814–1820. https://doi.org/10.1002/jcp.22906

Published

2023-12-20

How to Cite

Studies on Desmodium velutinum (Willd.) DC. Leaf Extract’s Polyphenol Profile, in-vitro Antioxidant Capacity, and Anti-Proliferative Activity of A549 Cell Lines. (2023). Nigerian Journal of Biochemistry and Molecular Biology, 38(4), 184-196. https://www.nsbmb.org.ng/journals/index.php/njbmb/article/view/392

Similar Articles

You may also start an advanced similarity search for this article.