Potential of Green Synthesis Using a Nanotechnology Approach to Enhance the Biological Properties of Onion Extracts
DOI:
https://doi.org/10.4314/njbmb.v39i2.5Keywords:
antioxidant, anti-inflammation, nanotechnology, onion, bulbs, extractAbstract
The use of onions as a natural source of medicinal compounds is on the rise globally. However, its therapeutic effectiveness is limited by several factors, including poor solubility, low bioavailability, etc. Hence, developing strategies to overcome these limitations and enhance their therapeutic potential is justified. This study therefore investigates the potential of green synthesis using a nanotechnology approach to enhance the biological properties of onion extracts. Three different onion varieties were used. The bulbs of each onion were sliced, air-dried, and separately extracted using an ethyl acetate and ethanol solvent mixture (1:1 v/v). Each extract obtained was divided into two: plain onion extract and synthesised silver nanoparticles (Ag-NPs) onion extract. This was obtained by mixing the extract with a solution of silver nitrate and heating for 5 hours at 60oC. DPPH (1,1 difenyl-2-picryl-hydrazyl) and hydrogen peroxide scavenging, total antioxidant capacity, red blood cell membrane stabilisation, protein denaturation, and heat-induced hemolysis were assayed. The results of the study showed enhanced DPPH scavenging abilities by the synthesised silver nanoparticles of onion extracts at ≤ 81.01% in comparison to the value exerted by the plain onion extracts at ≤ 75.61%. The total antioxidant capacities of the synthesised Ag-NPs ranged from 0.46±0.6 to 0.85±0.06 mg AAE/g dry extract, while the plain onion extracts ranged from 0.76±0.3 to 0.96±0.09 mg AAE/g dry extract. The synthesised Ag-NPs inhibited protein denaturation at 61.80±0.09–73.34±0.16%, compared to 42.25±0.20–55.08±0.12% by the plain onion extract. The study suggests that green synthesis using nanotechnology approaches can enhance the antioxidant and anti-inflammatory potential of onion extract, leading to improved therapeutic efficacy.
Downloads
References
Abdel-Tawab, M. (2021). Considerations to be taken when carrying out medicinal plant research—what we learn from an insight into the IC50 values, bioavailability and clinical efficacy of exemplary anti-inflammatory herbal components. Pharmaceuticals ,14:437.
Al-Ansari, M., Al-Humaid, M., Aldawsari, L., Abid, M., Jhanani, I. F. and Shanmuganathan, R. (2023). Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity. Environmental Research, 224: 115497.
Alfei, S. and Zuccari, G. (2024). Attempts to improve lipophilic drugs’ solubility and bioavailability: A focus on Fenretinide. Pharmaceutics, 16(5):579.
Ani, I., Alfa, T., Kupoluyi, A. and Kupoluyi, A. (2022). Nutrients and antioxidant properties of red, yellow and white onions (Allium cepa L) in Ibadan, Oyo State, Nigeria. Journal of Dietitians Association of Nigeria, 12: 45–51.
Anwar, S., A. Almatroodi, S., Almatroudi, A., Allemailem, K. S., Joseph, R. J., Khan, A. A., Alrumaihi, F., Alsahli, M. A. and Husain Rahmani, A. (2021). Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: an effective approach for attenuation of oxidative stress mediated diseases. International Journal of Food Properties, 24(1): 677–701.
Aritonang, H. F., Koleangan, H. and Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ (Impatiens balsamina and lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology, 2019: 1–8.
Aritonang, H. F., Onggo, D., C. and Radiman, C. L. (2015). Insertion of platinum particles in bacterial cellulose membranes from PtCl4 and H2PtCl6 Precursors. Macromolecular Symposia, 353 (1): 55–61.
Azeem, A., Dilip, C., Prasanth, S., Shahima, V. J. H., Sajeev, K. and Naseera, C. (2010). Anti–inflammatory activity of the glandular extracts of Thunnus alalunga. Asian Pacific Journal of Tropical Medicine, 3(10): 794–796.
Balram, B., Kaur, N., Kamal, K., Singh, G. and Aggarwal, D. (2024). Nanotechnology in herbal drug delivery systems: enhancing therapeutic efficacy and patient compliance. Research Journal of Pharmacy and Technology, 17(2):934–938.
Chakraborty, A. J., Uddin, T.M., Matin-Zidan, B.M.R., Mitra, S., Das, R., Nainu, F., Dhama, K., Roy, A., Hossain, M.J., Khusro, A. and Emran, T.B. (2022). Allium cepa: A treasure of bioactive phytochemicals with prospective health benefits. Evidence Based Complement Alternative Medicine. 18, 2022:4586318.
Chatterjee, P., Chandra, S., Dey, P. and Bhattacharya, S. (2012). Evaluation of anti-inflammatory effects of green tea and black tea: a comparative in vitro study. Journal of Advance Pharmaceutical Technology Research. 3(2): 136–138
Chettri, A., Subba, A., Singh, G. P. and Bag, P. P. (2024). Pharmaceutical co-crystals: A green way to enhance drug stability and solubility for improved therapeutic efficacy. Journal of Pharmacy and Pharmacology, 76(1): 1–12
Cordeiroa, G. S., Santosa, L. S., Vieiraa, G. P., Espírito-Santoa, D. A., Teixeiraa, R. S. Matosb, R. J. B., Costab, C. A. S., Deiróa, T. C. B. J. and Barreto-Medeirosa, J. M. (2023). Antioxidant, anti-inflammatory and anti-obesity effects of onion and its by-products in high-fat fed rodents: a systematic review. Brazilian Journal of Biology. 83: e266108.
Dhivya, M., Sharmila, S., Abirami, S. and Vijayashalini, P. (2023). Antioxidant and free-radical-scavenging activity of Sarcostemma brevistigma, Wight and Arn.- An Ethnomedicinal Plant. International Journal of Science and Research (IJSR), 12(9): 560–574.
FAO. (2012). World onion production. Food and agriculture organization of the United Nations. http://faostat.fao.org, accessed February 27, 2023.
Forney, L.A., Lenard, N.R., Stewart, L.K. and Henagan, T.M. (2018). Dietary quercetin attenuates adipose tissue expansion and inflammation and alters adipocyte morphology in a tissue-specific manner. International Journal of Molecular Sciences, 19(3):895.
Fraga, C. G., Croft, K. D., Kennedy, D. O. and Tomás-Barberán, F. A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2):514-528.
Ghaffar, S. Abbas, A. Naeem-ul-Hassan, M. Assad, N. Sher, M. Ullah, S. Alhazmi, H.A. Najmi, A. Zoghebi, K. and Al Bratty, M. (2023). Improved photocatalytic and antioxidant activity of olive fruit extract-mediated ZnO nanoparticles. Antioxidants, 12: 1201.
Ghatak, D. and Iyyaswami, R. (2019, May). Selective encapsulation of quercetin from dry onion peel crude extract in reassembled casein particles. Food and Bioproducts Processing, 115: 100–109.
Grzelak-Błaszczyk K., Milala, J., Kolodziejczyk K., Sójka, M., Czarnecki A., Kosmala M., Klewicki R., Fotschki B., Jurgoński A. and Juśkiewicz J. (2020). Onion protocatechuic acid and quercetin glucosides attenuate changes induced by high fat diet in rats. Food and Function, 4(4):3585-3597.
Guchu, B. M., Machocho, A.K., Mwihia, S.K. and Ngugi, M.P. (2020). In Vitro antioxidant activities of methanolic extracts of Caesalpinia volkensii Harms., Vernonia lasiopus O. Hoffm., and Acacia hockii De Wild", Evidence-Based Complementary and Alternative Medicine, 2020: 3586268.
Gupta, R. and Xie, H. (2018). Nanoparticles in daily life: applications, toxicity and regulations. Journal of Environmental Pathology, Toxicology and Oncology, 37(3): 209–230.
Helmy, A., El-Shazly, M., Seleem, A., Abdelmohsen, U., Salem, M. A., Samir, A., Rabeh, M., Elshamy, A. and Singab, A. N. B. (2020). The synergistic effect of biosynthesized silver nanoparticles from a combined extract of parsley, corn silk, and gum arabic: in vivo antioxidant, anti-inflammatory and antimicrobial activities. Materials Research Express, 7(2): 025002.
Hussen, E.M. and Endalew, S.A. (2023). In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complement Med Ther. 23(1):146.
Jadhav, V., Roy, A., Kaur, K., Rai, A. K. and Rustagi, S. (2024). Recent advances in nanomaterial-based drug delivery systems. Nano-Structures and Nano-Objects, 37:101103.
Jitae, K., Pham, T. H., Heesun, Y., Nguyen, M. V. and Taeyoung, K. (2024). Improved photocatalytic oxidation of micropollutant in wastewater by solar light: assisted palladium-doped graphitic carbon nitride. Environmental Geochemistry and Health, 46(3):76
Kang, S. N., Goo, Y. M., Yang, M. R., Ibrahim, R., Cho, J. H., Kim, I. S. and Lee, O. H. (2013). Antioxidant and antimicrobial activities of ethanol extract from the stem and leaf of Impatiens balsamina l. (Balsaminaceae) at different harvest times. Molecules, 18(6): 6356–6365.
Kedare, S. B. and Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4): 412–422.
Mahreen F. and Maham F (2023). Insights into green synthesized and chemical synthesized nanoparticles for biomedical applications. Journal of Zoology and Systematics: 1(1): 29–36.
Manimegalai, S., Vijayarangan, D. R, Ranganathan, P., Marcello, N., Marslin, G., Siram,K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P. and Franklin, G. (2022). Green synthesis, characterization and biological activity of Solanum trilobatum-mediated silver nanoparticles, Saudi Journal of Biological Sciences, 29(4): 2131-2137.
Marslin, G., Siram, K. and Maqbool, Q. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles Materials, 11(6): 940.
Meenakshi, S., Umayaparvathi, S., Arumugam, M. and Balasubramanian, T. (2011). In vitro antioxidant properties of FTIR analysis of two sea weeds of Gulf of Mannar. Asian Pacific Journal of Tropical Biomedicine. 1(1): S66–S70.
Mhya, D.H., Mohammed, U., Mohammed, A., Gabriel, S.M. and Dahiru, D. (2024). Phytochemical analysis and evaluation of antioxidant properties of extracts from leaves, stem-barks and roots of Pterocarpus erinaceus. Dutse Journal of Pure and Applied Sciences, 10 (1c):10-19.
Moreira dos Santos, M., João Queiroz, M. and Baptista, P. V. (2012). Enhancement of antibiotic effect via gold:silver-alloy nanoparticles. Journal of Nanoparticle Research, 14(5):1-8
Nicastro, H. L., Ross, S. A. and Milner, J. A. (2015). Garlic and onions: their cancer prevention properties. Cancer Prevention Research, 8(3): 181–189.
Nitthikan, N., Preedalikit, W., Supadej, K., Chaichit, S., Leelapornpisid, P. and Kiattisin, K. (2024,). Exploring the wound healing potential of a Cuscuta chinensis extract-loaded nanoemulsion-based gel. Pharmaceutics, 16(5), 573.
Okoduwa, S.I.R., Umar, I.A., James, D. B., Inuwa, H. M. and Habila, J. D. (2016). Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants. World Journal of Diabetes, 7(20): 605.
Okoduwa, S.I.R., Abdulwaliyu, I., Igiri, B.E., Arekemase, S.O., Okoduwa, U.J., Itiat, J.F., Egbule, M.N. and Mustapha, R. A. (2024,). Multi-therapeutic potential of flavonoids as an essential component in nutraceuticals for the treatment and management of human diseases. Phytomedicine Plus, 4(2): 100558.
Parwanto, M. E., Senjaya, H. and Edy, H. J. (2013). Formulasi salep antibakteri ekstrak etanol daun tembelekan (Lantana camara L). Pharmacon, 2(3):104-108
Patel, S. and Patel, N. K. (2022). Biosynthesis of silver nanoparticles using lantana camara seed extract and its antibacterial potential. International Journal of Multidisciplinary, 7(7): 01–07.
Prieto, P., Pineda, M. and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269:337-41
Riaz, M., Ismail, M., Ahmad, B., Zahid, N., Jabbour, G., Khan, M. S., Mutreja, V., Sareen, S., Rafiq, A., Faheem, M., Shah, M. M., Khan, M. I., Bukhari, S. A. I. and Park, J. (2020,). Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles. Green Processing and Synthesis, 9(1): 693–705.
Ruch, R. J., Cheng, S.J. and Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis. 10: 1003–1008.
Samota, M. K., Sharma, M., Kaur, K., Sarita, Yadav, D. K., Pandey, A. K., Tak, Y., Rawat, M., Thakur, J. and Rani, H. (2022). Onion anthocyanins: extraction, stability, bioavailability, dietary effect, and health implications. Frontiers in Nutrition, 9:917617
Shabbir, M. A., Naveed, M., Rehman, S. U., Ain, N. U., Aziz, T., Alharbi, M., Alsahammari, A. and Alasmari, A. F. (2023). Synthesis of iron oxide nanoparticles from madhuca indica plant extract and assessment of their cytotoxic, antioxidant, anti-inflammatory, and anti-diabetic properties via different nanoinformatics approaches. ACS Omega, 8(37):33358–33366.
Shenoy, S., Shwetha, K., Prabhu, K., Maradi, R., Bairy, K. L. and Shanbhag, T. (2010). Evaluation of anti-inflammatory activity of Tephrosia purpurea in rats. Asian Pacific Journal of Tropical Medicine, 3 (3): 193-5.
Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J. and Saraf, M.N. (1999). Membrane stabilizing activity — a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70:251–7.
Singh, R., Singh, R., Parihar, P. and Mani, J. V. (2024). Green synthesis of silver nanoparticles using Solanum sisymbriifolium leaf extract: characterization and evaluation of antioxidant, antibacterial and photocatalytic degradation activities. Process Biochemistry, 143:337-352
Sikder, M., Millat, M. and Sultana, A. (2012). In vitro membrane stabilizing activity total phenolic content, cytotoxic, thrombolytic and antimicrobial activities of Calliandra surinamensis (Wall.). Journal of Pharmacognosy and Phytochemistry, 1:40–44.
Sivalingam, A. M., Pandian, A. and Rengarajan, S. (2024). Green synthesis of silver nanoparticles using Vernonia amygdalina leaf extract: characterization, antioxidant, and antibacterial properties. Journal of Inorganic and Organometallic Polymers and Materials. Retrieved from https://doi.org/10.1007/s10904-024-03046-y
Surh, Y. J. (1999,). Molecular mechanisms of chemo-preventive effects of selected dietary and medicinal phenolic substances. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 428(1–2):305–327.
Thompson, A. (2023). Aluminium nanoparticles show promise as less toxic alternative to gold. Scilight, 2023(12). Retrieved from https://doi.org/10.1063/10.0017780
Vernekar, N. and Taranath, T. (2023). Sunlight-driven instant synthesis of silver nanoparticles
using aqueous fruit extract of Terminalia paniculata roth and in vitro assessment of its antioxidant and anti-inflammatory activities. Journal of Microbiology, Biotechnology and Food Sciences, 13(1):e9236.
Valko, M., Leibfritz D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44–84.
Wahyuningsih, S.P.A., Savira, N.I.I, Anggraini, D.W., Winarni, D., Suhargo, L., Kusuma, B.W.A., Nindyasari, F., Setianingsih, N. and Mwendolwa, A.A. (2020). Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice. Scientifica (Cairo). 2020 (1):4237205
Yang, J., Meyers, K. J., van der Heide, J. and Liu, R. H. (2004). Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. Journal of Agricultural and Food Chemistry, 52(22: 6787–6793
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2024 Daniel H. Mhya, Stanley I.R Okoduwa, Abdulrashid Mohammed , Maryam H. Saidu, Hamdalat N. Muhammad, Abdullahi G. Jakwa (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.